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Introduction

Let C = {C1, C2, . . . , Cm} be a collection of n × n matrices with elements in F,
where F is the field R of real numbers or the field C of complex numbers. If there

is a nonsingular matrix R such that R∗CiR are all diagonal, the collection C is then

said to be simultaneously diagonalizable via congruence, where R∗ is the conjugate

transpose of R if Ci are Hermitian and simply the transpose of R if Ci are either

complex or real symmetric matrices. Moreover, if there exists a nonsingular matrix

S such that S−1CiS is diagonal for every i = 1, 2, . . . ,m then C is called simulta-

neously diagonalizable via similarity, shortly SDS. For convenience, throughout the

dissertation we use “SDC” to stand for either “simultaneously diagonalizable via con-

gruence” or “simultaneous diagonalization via congruence” if no confusion will arise.

The SDS problem is well-known and is completely solved. But the SDC problem

is still open in some senses. The SDC of C implies that a single change of basis

x = Ry makes all the quadratic forms x∗Cix simultaneously become the canonical

forms. Specifically, if R∗CiR = diag(αi1, αi2, . . . , αin) is the diagonal matrix with

diagonal elements αi1, αi2, . . . , αin, then x∗Cix is transformed to the sum of squares

y∗(R∗CiR)y =
∑n

j=1 αij|yj|2, for i = 1, 2, . . . ,m. This is one of the properties connect-

ing the SDC of matrices with many applications such as variational analysis [31], signal

processing [14, 52, 62], quantum mechanics [57], medical imaging analysis [2, 13, 67]

and many others, please see references therein. Especially, the SDC suggests a promis-

ing approach for solving quadratically constrained quadratic programming (QCQP)

[17, 74, 5]. In recent studies by Ben-Tal and Hertog [6], Jiang and Li [37], Alizadeh [4],

Taati [54], Adachi and Nakatsukasa [1], the SDC of two or three real symmetric matri-

ces has been efficiently applied for solving QCQP with one or two constraints. Ben-Tal

and Hertog [6] showed that if the matrices in the objective and constraint functions are

SDC, the QCQP with one constraint can be recast as a convex second-order cone pro-

gramming (SOCP) problem; the QCQP with two constraints can also be transformed

into an equivalent SOCP under the SDC together with additional appropriate assump-

tions. We know that the convex SOCP is solvable efficiently in polynomial time [4].

Jiang and Li [37] applied the SDC for some classes of QCQP including the generalized

trust region subproblem (GTRS), which is exactly the QCQP with one constraint, and

its variants. Especially the homogeneous version of QCQP, i.e., when the linear terms

in the objective and constraint functions are all zero, is reduced to a linear program if

the matrices are SDC. Salahi and Taati [54] derived an efficient algorithm for solving

GTRS under the SDC condition. Also under the SDC assumption, Adachi and Nakat-

sukasa [1] compute the positive definite interval I≻(C0, C1) = {µ ∈ R : C0 + µC1 ≻ 0}
of the matrix pencil and propose an eigenvalue-based algorithm for a definite feasible
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GTRS, i.e., the GTRS satisfies the Slater condition and I≻(C0, C1) ̸= ∅.

Those important applications stimulate various studies on the problem, that we

call the SDC problem in this dissertation. It is to find conditions on {C1, C2, . . . , Cm}
ensuring the existence of a congruence matrix R for the SDC problem of real symmetric

matrices [70, 27, 41, 65, 37], the SDC problem of complex symmetric matrices [34, 11]

and the SDC problem of Hermitian matrices [74, 7, 34]. However, for the real setting,

the best SDC results so far can only solve the case of two matrices while the case of

more than two matrices is solved under the assumption of a positive semidefinite matrix

pencil [37]. On the other hand, for the SDC problem of complex matrices, including

the complex symmetric and Hermitian matrices, can be equivalently rephrased as a

simultaneous diagonalization via similarity (SDS) problem [74, 7, 8, 11]. More impor-

tanly, the obtained results do not include algorithms for finding a congruence matrix

R, except for the case of two real symmetric matrices by Jiang and Li [37]. Those un-

solved issues inspire us to investigate, in this dissertation, algorithms for determining

whether a class C is SDC and compute a congruence matrix R if it indeed is.

The SDC problem was first developed by Weierstrass [70] in 1868. He obtained

sufficient SDC conditions for a pair of real symmetric matrices. Since then, several

authors have extended those results, including Muth 1905 [45], Finsler 1937 [18], Albert

1938 [3], Hestenes 1940 [28], and various others. See, for example, [12, 27, 29, 30, 34,

44, 65]. The results for two matrices obtained so far can be shortly reviewed as follows.

If at least one of the matrices C1, C2 is nonsingular, referred to as a nonsingular pair,

suppose it is C1, then C1, C2 are SDC if and only if C−1
1 C2 is similarly diagonalizable

[27], see also [64, 65]. If the non-singularity is not assumed, the obtained SDC results

of C1, C2 were only sufficient. Specifically,

a) if there exist scalars µ1, µ2 ∈ R such that µ1C1 + µ2C2 ≻ 0, then C1, C2 are SDC

[30, 65];

b) if {x ∈ Rn : xTC1x = 0} ∩ {x ∈ Rn : xTC2x = 0} = {0} then C1, C2 are SDC

[44, 59, 65].

Actually, the classical Finsler theorem [18] in 1937 indicated that these two conditions

a) and b) are equivalent whenever n ≥ 3. It has to wait until Hoi [74] in 1970 and

independently Becker [5] in 1980 for a necessary and sufficient SDC condition for a

pair of Hermitian matrices. Unfortunately, when more than two matrices are involved,

none of those aforementioned results remains true. In 1990 and 1991, Binding [7, 8]

provided some equivalent conditions, which link to the generalized eigenvalue problem

and numerical range of Hermitian matrices or to the generalized eigenvalue problem,

2



for a finite collection of Hermitian matrices to be SDC by a unitary matrix. However,

there is still lack of algorithms for finding a congruence matrix R. In 2002, Hiriart-

Urruty and M. Torki [29] and then, in 2007, Hiriart-Urruty [30] proposed an open

problem to find sensible and “palpable” conditions on C1, C2, . . . , Cm ensuring they

are simultaneously diagonalizable via congruence. In 2016 Jiang and Li [37] obtained

a necessary and sufficient SDC condition for a pair of real symmetric matrices and

proposed an algorithm for finding a congruence matrix R if it exists. Nevertheless,

we find that the result of Jiang and Li [37] is not complete. A missing case not

considered in their paper is now added to make it up in this dissertation. For more

than two matrices, Jiang and Li [37] proposed a necessary and sufficient SDC condition

under the existence assumption of a semidefinite matrix pencil. After this result,

an open question still remains to be investigated: solving the SDC problem of more

than two real symmetric matrices without semidefinite matrix pencil assumption? In

2020, Bustamante et al. [11] proposed a necessary and sufficient condition for a set of

complex symmetric matrices to be SDC by equivalently rephrasing the SDC problem

as the classical problem of simultaneous diagonalization via similarity (SDS) of a new

related set of matrices. A procedure to determine in a finite number of steps whether

or not a set of complex symmetric matrices is SDC was also proposed. However, the

SDC results of complex symmetric matrices may not hold for the real setting. That

is, even the given matrices C1, C2, . . . , Cm are all real, the resulting matrices R and

RTCiR may have to be complex, please see [11, Example 16], and also in Example

2.1.7. Apparently, the SDC of complex symmetric matrices does also not hold for the

Hermitian matrices, please see [34, Theorem 4.5.15], Example 2.1.7.

The dissertation presents several new results on the SDC of Hermitian matrices

and of real symmetric matrices. Specially, the results include algorithms for answering

whether the matrices are SDC and returning a congruence matrix if it exists. We

also present some applications of the SDC of C to some related problems including

computing the positive semidefinite interval of matrix pencil; solving QCQP, GTRS in

particular; and maximizing a sum of generalized Rayleigh quotients.

The dissertation is organized as follows. In Chapter 1 we present some related

concepts and obtained results so far of the SDC problem including the SDC of real

symmetric matrices, complex symmetric matrices and Hermitian matrices. In Chapter

2 we first focus on solving the SDC problem of Hermitian matrices, i.e., when Ci are

all Hermitian. This part is based on the results in [42]. The main contributions of this

part are as follows.

• We develop sufficient and necessary conditions (see Theorems 2.1.4 and 2.1.5) for a
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collection of finitely many Hermitian matrices to be simultaneously diagonalizable

via ∗-congruence. The proofs use only matrix computation techniques;

• Interestingly, one of the conditions shown in Theorem 2.1.5 requires the existence of

a positive definite solution of a system of linear equations over Hermitian matrices.

This leads to the use of the SDP solvers (for example, SDPT3 [63]) for checking the

simultaneous diagonalizability of the initial Hermitian matrices. In case the matrices

are SDC, i.e., such a positive definite solution exists, we apply the existing Jacobi-like

method in [10, 43] to simultaneously diagonalize the commuting Hermitian matrices

that are the images of the initial ones under the congruence defined by the square

root of the above positive definite solution. The Hermitian SDC problem is hence

completely solved. As a consequence, this solves the long-standing SDC problem

for real symmetric matrices mentioned as an open problem in [30], and for arbitrary

square matrices since any square matrix is a summation of its Hermitian and skew

Hermitian parts (see Theorem 2.1.6);

• In line with giving the equivalent condition that requires the maximum rank of Her-

mitian pencils (Theorem 2.1.2), we suggest a Schmüdgen-like algorithm for finding

such the maximum rank in Algorithm 2. This methodology may also be applied in

some other simultaneous diagonalizations, for example, that in [11];

• Finally, we propose corresponding algorithms the most important one of which is

Algorithm 6 for solving the Hermitian SDC problem. These are implemented in

Matlab. The main algorithm consists of two stages which are summarized as

follows: For C1, . . . , Cm ∈ Hn,

Stage 1: Checking if there is a positive definite matrix P solving an appropriate

semidefinite program based on Theorem 2.1.5 iii). Our main contribution

stays in this part.

Stage 2: If such a P exists, apply Algorithm 5 [10, 43] to find a unitary matrix V

that simultaneously diagonalizes the new commuting Hermitian matrices√
PCi

√
P , i = 1, . . . ,m.

The second part of Chapter 2 is based on [49], which focuses on the SDC prob-

lem of the real symmetric matrices, i.e., when Ci are all real symmetric. Although,

in Theorem 2.1.5, our results (i)-(iii) on the Hermitian matrices can also apply to the

real setting, get we find that the decomposition techniques for two matrices in [37]

can be generalized to construct an inductive procedure for the SDC problem of C with

m ≥ 3. The approach based on [37] may be better than the SDP one, please see Ex-

ample 2.2.2. To this end, the collection C is divided into two cases: the nonsingular

4



collection, denoted by Cns, when at least one Ci ∈ C is non-singular. Without loss of

generality, we always assume that C1 is non-singular. On the other hand, the singular

collection, denoted by Cs, when all C ′
is in C are non-zero but singular. For the non-

singular collection Cns, the arguments first apply to {C1, C2}; if C1, C2 are SDC then

a matrix Q(1) is constructed at the first iteration such that C
(1)
2 := (Q(1))TC2Q

(1) is a

non-homogeneous dilation of C
(1)
1 := (Q(1))TC1Q

(1), while C
(1)
j := (Q(1))TCjQ

(1), j ≥ 3

share the same block diagonal structure of C
(1)
1 , please see Lemma 2.2.2 and Remark

2.2.1 below. At the second iteration, {C(1)
1 , C

(1)
3 } are checked. If C

(1)
1 , C

(1)
3 are SDC,

then Q(2) is constructed such that C
(2)
3 := (Q(2))TC

(1)
3 Q(2) and C

(2)
2 := (Q(2))TC

(1)
2 Q(2)

are non-homogeneous dilations of C
(2)
1 := (Q(2))TC

(1)
1 Q(2). Next, {C(2)

1 , C
(2)
4 } are con-

sidered at the third step; and so forth. These results are presented in Sect. 2.2.1. For

the singular collection Cs, we also begin with {C1, C2}. If the matrices C1 and C2 are

SDC, we find a nonsingular matrix U1 to get

Ĉ1 := UT
1 C1U1 = diag((C11)p1 , 0n−p1), p1 < n,

Ĉ2 := UT
1 C2U1 = diag((C21)p1 , 0n−p1)

such that (C11)p1 , (C21)p1 are SDC and (C21)p1 is nonsingular. At the second step, we

consider the SDC of Ĉ1, Ĉ2 and Ĉ3 = UT
1 C3U1. If they are SDC, we find a nonsingular

matrix U2 to get

C̆1 := UT
2 Ĉ1U2 = diag((C11)p2 , 0n−p2), p1 ≤ p2,

C̆2 := UT
2 Ĉ2U2 = diag((C21)p2 , 0n−p2),

C̆3 := UT
2 Ĉ3U2 = diag((C31)p2 , 0n−p2)

such that (C11)p2 , (C21)p2 , (C31)p2 are SDC and (C31)p2 is nonsingular; and so forth. By

this way, we show that if Cs is SDC, we can create a new collection C̃s = {C̃1, C̃2, . . . , C̃m}
such that C̃i = diag((Ci1)p, 0n−p), p ≤ n, and (C(m−1)1)p is nonsingular. Importantly,

the given collection Cs is SDC if and only if (C11)p, (C21)p, . . . , (C(m−1)1)p, (Cm1)p are

SDC. Therefore, we move from the SDC of a singular collection to the SDC of a non-

singular collection; please see Theorem 2.2.3 in Sect. 2.2.3.

Chapter 3 is devoted to presenting some applications of the SDC results. We first

show how to explore the SDC properties of two real symmetric matrices C1 and C2 to

compute the positive semidefinite interval I⪰(C1, C2) = {µ ∈ R : C1 + µC2 ⪰ 0} of

matrix pencil C1+µC2. Indeed, we show that if C1, C2 are not SDC, then I⪰(C1, C2) has

at most one value µ, while if C1, C2 are SDC, I⪰(C1, C2) could be empty, a singleton set

or an interval. Each case helps to analyze when the GTRS is unbounded from below,

has a unique Lagrange multiplier or has an optimal Lagrange multiplier µ∗ in a given

closed interval. Such a µ∗ can be computed by a bisection algorithm. This results

5



follow from [47]. The next application will be for QCQP which takes the following

format

(QCQP)
min xTC1x+ 2aT1 x

s.t. xTCix+ 2aTi x+ bi ≤ 0, i = 2, . . . ,m,

where ai ∈ Rn, bi ∈ R. We show that if the matrices Ci in the objective and constraint

fucntions are SDC, the QCQP can be relaxed to a convex SOCP problem. In general,

the ralaxation admits a positive gap. That is, the optimal value of the relaxed SOCP

is strictly less than that of the primal QCQP. The cases with a tight ralaxation will

be presented in that chapter. Especially, if the matrices Ci are SDC and the QCQP

is homogeneous, i.e., ai = 0 for i = 1, 2, . . . ,m, then QCQP is reduced to a linear

programming after two times of changing variables. A special case of the homogeneous

QCQP, which minimizes a quadratic form subjective to two homogeneous quadratic

constraints over the unit sphere [46], is reduced to a linear programming problem on

a simplex if the matrices are SDC. Finally, we show the applications for solving a

generalized Rayleigh quotient problem which maximizes a sum of generalized Rayleigh

quotients.

6



Chapter 1

Preliminaries

The main purpose of this chapter is to provide basic concepts and existing results

for matrices such as similarity diagonalization, spectral decomposition and others. For

completeness, some results are accompanied by a short proof. In addition, most of

SDC results of two matrices, including of real symmetric matrices, complex symmetric

matrices and Hermitian matrices, will be presented in this chapter. We also present our

new result on decomposition of two real singular symmetric matrices into blocks, which

is a missing case in Jiang and Li’s study [37] and now dealt with in this dissertation.

Please see Lemma 1.2.8 and Theorem 1.2.1 below.

1.1 Some prepared concepts for the SDC problems

Let us begin with some notations, F denotes the field of real numbers R or complex

ones C, and Fn×n is the set of all n× n matrices with entries in F; Hn denotes the set

of n× n Hermitian matrices, Sn denotes the set of n× n real symmetric matrices and

Sn(C) denotes the set of n× n complex symmetric matrices. In addition,

� The matrices C1, C2, . . . , Cm ∈ Fn×n are said to be SDS on F, shortly written as

F-SDS or shorter SDS, if there exists a nonsingular matrix P ∈ Fn×n such that

every P−1CiP is diagonal in Fn×n.

When m = 1, we will say “C1 is similar to a diagonal matrix” or “C1 is diago-

nalizable (via similarity)” as usual;

� The matrices C1, C2, . . . , Cm ∈ Hn are said to be SDC on C, shortly written as

∗-SDC, if there exists a nonsingular matrix P ∈ Cn×n such that every P ∗CiP is

7



diagonal in Rn×n. Here we emphasize that P ∗CiP must be real (if diagonal) due

to the hemitianian of Ci and P ∗CiP.

When m = 1, we will say “C1 is congruent to a diagonal matrix” as usual;

� The matrices C1, C2, . . . , Cm ∈ Sn are said to be SDC on R, shortly written as

R-SDC, if there exists a nonsingular matrix P ∈ Rn×n such that every P TCiP is

diagonal in Rn×n.

When m = 1, we will also say “C1 is congruent to a diagonal matrix” as usual;

� Matrices C1, C2, . . . , Cm ∈ Sn(C) are said to be SDC on C if there exists a

nonsingular matrix P ∈ Cn×n such that every P TCiP is diagonal in Cn×n. We

also abbreviate this as C-SDC.

When m = 1, we will also say “C1 is congruent to a diagonal matrix” as usual.

Some important properties of matrices which will be used later in the dissertation.

Lemma 1.1.1 ([34], Lemma 1.3.10). Let A ∈ Fn×n, B ∈ Fm×m. The matrix M =

diag(A,B) is diagonalizable via similarity if and only if so are both A and B.

Lemma 1.1.2 ([34], Problem 15, Section 1.3). Let A,B ∈ Fn×n and

A = diag(α1In1 , . . . , αkInk
)

with distinct scalars αi’s. If AB = BA, then B = diag(B1, . . . , Bk) with Bi ∈ Fni×ni

for every i = 1, . . . , k. Furthermore, B is Hermitian (resp., symmetric) if and only if

so are all Bi’s.

Proof. Partition B as B = (Bij)i,j=1,2,...,k, where each Bii is a square submatrix of size

ni × ni, i = 1, 2, . . . , k and off-diagonal blocks Bij, i ̸= j, are of appropriate sizes. It

then follows from

 α1B11 . . . α1B1k

...
. . .

...

αkBk1 . . . αkBkk

 = AB = BA =

 α1B11 . . . αkB1k

...
. . .

...

α1Bk1 . . . αkBkk


that αiBij = αjBij,∀i ̸= j. Thus Bij = 0 for every i ̸= j.

8



Lemma 1.1.3 ([34], Theorem 4.1.5). (The spectral theorem of Hermitian ma-

trices) Every A ∈ Hn can be diagonalized via similarity by a unitary matrix. That

is, it can be written as A = UΛU∗, where U is unitary and Λ is real diagonal and is

uniquely defined up to a permutation of diagonal elements.

Moreover, if A ∈ Sn then U can be picked to be real.

We now present some preliminary result on the rank of a matrix pencil, which is

the main ingredient in our study on Hermitian matrices in Chapter 2.

Lemma 1.1.4. Let C1, . . . , Cm ∈ Hn and denote C(λ) = λ1C1 + · · · + λmCm, λ =

(λ1, . . . , λm) ∈ Rm. Then the following hold

(i)
⋂

λ∈Rm kerC(λ) =
⋂m

i=1 kerCi = kerC, where C =
(
C1 . . . Cm

)∗
.

(ii) max{rankC(λ)| λ ∈ Rm} ≤ rankC.

(iii) Suppose dimF(
⋂m

i=1 kerCi) = k. Then
⋂m

i=1 kerCi = kerC(λ) for some λ ∈ Rm if

and only if rankC(λ) = maxλ∈Rm rankC(λ) = rankC = n− k.

Proof.

(i) We have
⋂m

i=1 kerCi ⊆
⋂

λ∈Rm kerC(λ).

On the other hand, for any x ∈
⋂

λ∈Rm kerC(λ), we have C(λ)x =
∑m

i=1 λiCix =

0,∀λ = (λ1, . . . , λm) ∈ Rm. Implying
∑m

i=1 λiCix = 0,∀λ = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm.

Then, Cix = 0,∀i = 1, 2, . . . ,m, and
⋂

λ∈Rm kerC(λ) ⊆
⋂m

i=1 kerCi.

Similarly, we also have
⋂m

i=1 kerCi = kerC.

(ii) The part (ii) follows from the fact that

rankC(λ) = rank

(λ1I . . . λmI
)C1

...

Cm


 ≤ rank

C1

...

Cm

 = rankC,

for all λ ∈ Rm.

(iii) Using the part (i), we have kerC =
⋂m

i=1 kerCi ⊆ kerC(λ). Then by the part

(ii),

m⋂
i=1

kerCi = kerC(λ)⇐⇒ dimF (kerC(λ)) = dimF

(
m⋂
i=1

kerCi

)
= n− rankC

⇐⇒ rankC(λ) = rankC = n− k ≥ rankC(λ),∀λ ∈ Rm.

9



This is certainly equivalent to n− k = rankC(λ) = maxλ∈Rm rankC(λ).

Compared with the SDC, which has existed for a long time in literature, the SDS

seems to be solved much earlier as shown in [34].

Lemma 1.1.5 ([34], Theorem 1.3.19). Let C1, . . . , Cm ∈ Fn×n be such that each of

them is similar to a diagonal matrix in Fn×n. Then C1, . . . , Cm are F-SDS if and only

if Ci commutes with Cj for i < j.

The following result is simple but important to Lemma 1.2.14 below and Theorem

2.1.4 in Chapter 2.

Lemma 1.1.6. Let C̃1, C̃2, . . . , C̃m ∈ Hn be singular and C1, C2, . . . , Cm ∈ Hp, p < n

so that

C̃i = diag((Ci)p, 0n−p). (1.1)

Then C̃1, C̃2, . . . , C̃m are ∗-SDC if and only if C1, C2, . . . , Cm are ∗-SDC.

Moreover, the lemma is also true for the real symmetric setting: C̃1, C̃2, . . . , C̃m ∈
Sn are R-SDC if and only if C1, C2, . . . , Cm ∈ Sp are R-SDC.

Proof. If C1, C2, . . . , Cm are ∗-SDC by a nonsingular matrix Q then C̃1, C̃2, . . . , C̃m are

∗-SDC by the nonsingular matrix Q̃ = diag(Q, In−p) with In−p being the (n−p)×(n−p)
unit matrix.

Conversely, suppose C̃1, C̃2, . . . , C̃m are ∗-SDC by a nonsingular matix U. Parti-

tion

U =

(
U1 U2

U3 U4

)
,

where U1 ∈ Cp×p, U4 ∈ C(n−p)×(n−p).

For every i = 1, 2, . . . ,m, the matrix

U∗

(
Ci 0

0 0p

)
U =

(
U∗
1 ĈiU1 U∗

1 ĈiU2

U∗
2 ĈiU1 U∗

2 ĈiU2

)
is diagonal. This implies U∗

1CiU1 and U∗
2CiU2 are diagonal. Since U is nonsingular,

we can assume U1 is nonsingular after multiplying on the right of U by an appropriate

permutation matrix. This means U1 simultaneously diagonalizes C̃i’s.

The case C̃i ∈ Sn, Ci ∈ Sp, i = 1, 2, . . . ,m, is proved similarly.

10



1.2 Existing SDC results

In this section we recall the obtained SDC results so far. The simplest case is of

two matrices.

Lemma 1.2.1 ([27], p.255). Two real symmetric matrices C1, C2, with C1 nonsingular,

are R-SDC if and only if C−1
1 C2 is real similarly diagonalizable.

A similar result but for Hermitian matrices was presented in [34, Theorem 4.5.15].

That is, if C1, C2 ∈ Hn, C1 is nonsingular, then C1 and C2 are ∗-SDC if and only if

C−1
1 C2 is real similarly diagonalizable. This conclusion also holds for complex symmet-

ric matrices as presented in Lemma 1.2.2 below. However, the resulting diagonals in

Lemma 1.2.2 may not be real.

Lemma 1.2.2 ([34], Theorem 4.5.15). Let C1, C2 ∈ Sn(C) and C1 is a nonsingular

matrix. Then, the following conditions are equivalent:

(i) The matrices C1 and C2 are C-SDC.

(ii) There is a nonsingular P ∈ Cn×n such that P−1C−1
1 C2P is diagonal.

If the non-singularity is not assumed, the results were only sufficient.

Lemma 1.2.3 ([65], p.221). Let C1, C2 ∈ Sn. If {x ∈ Rn : xTC1x = 0} ∩ {x ∈
Rn : xTC2x = 0} = {0} then C1 and C2 can be diagonalized simultaneously by a real

congruence transformation, provided n ≥ 3.

Lemma 1.2.4 ([65], p.230). Let C1, C2 ∈ Sn. If there exist scalars µ1, µ2 ∈ R such

that µ1C1 + µ2C2 ≻ 0 then C1 and C2 are simultaneously diagonalizable over R by

congruence.

This result holds also for the Hermitian matrices as presented in [34, Theorem

7.6.4]. In fact, the two Lemmas 1.2.3 and 1.2.4 are equivalent when n ≥ 3, which

is exactly Finsler’s Theorem [18]. If the positive definiteness is relaxed to positive

semidefiniteness, the result is as follows.

Lemma 1.2.5 ([41], Theorem 10.1). Let C1, C2 ∈ Hn. Suppose that there exists a

positive semidefinite linear combination of C1 and C2, i.e., αC1 + βC2 ⪰ 0 for some

α, β ∈ R, and ker(αC1 + βC2) ⊆ kerC1 ∩ kerC2. Then C1 and C2 are simultaneously

diagonalizable via congruence ( i.e ∗-SDC), or if C1 and C2 are real symmetric then

they are R-SDC.

11



For a singular pair of real symmetric matrices, a necessary and sufficient SDC

condition, however, has to wait until 2016 when Jiang and Li [37] obtained not only

theoretical SDC results but also an algorithm. The results are based on the following

lemma.

Lemma 1.2.6 ([37], Lemma 5). For any two n × n singular real symmetric matrices

C1 and C2, there always exists a nonsingular matrix U such that

Ã := UTC1U =

(
A1 0p×(n−p)

0(n−p)×p 0n−p

)
(1.2)

and

B̃ := UTC2U =

 B1 0p×q B2

0q×p B3 0q×r

BT
2 0r×q 0r

 (1.3)

where p, q, r ≥ 0, p + q + r = n, A1 is a nonsingular diagonal matrix, A1 and B1 have

the same dimension of p × p, B2 is a p × r matrix, and B3 is a q × q nonsingular

diagonal matrix.

We observe that in Lemma 1.2.6, B3 is confirmed to be a nonsingular q × q

diagonal matrix. However, we will see that the singular pair C1 =

 1 0 0

0 0 0

0 0 0

 and

C2 =

 1 1 1

1 0 0

1 0 0

 cannot be converted to the forms (1.2) and (1.3). Indeed, in general

we have the following result.

Lemma 1.2.7. If C1 =

 (Â1)p︸ ︷︷ ︸
invert. & diag.

0

0 0n−p

 ;C2 =

(
(B̂1)p B̂2

B̂T
2 0n−p

)
∈ Sn such that

Â1 is a p× p nonsingular diagonal matrix, B̂1 is a p× p symmetric matrix and B̂2 is

a p × (n − p) nonzero matrix, p < n then C1 and C2 cannot be transformed into the

forms (1.2) and (1.3), respectively.

Proof. We suppose in contrary that C1 and C2 can be transformed into the forms (1.2)

and (1.3), respectively. That is there exists a nonsingular U such that

UTC1U =


(A1)p︸ ︷︷ ︸

invert. & diag.

0 0

0 0s1 0

0 0 0n−p−s1

 , (1.4)
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and

UTC2U =


(B1)p 0 B2

0 (B3)s1︸ ︷︷ ︸
invert. & diag.

0

BT
2 0 0n−p−s1

 . (1.5)

where (A1)p is a p × p nonsingular diagonal matrix and B3 is a s1 × s1 nonsingular

diagonal matrix, s1 ≤ n− p.

We write B̂2 = (B̂3 B̂4) such that B̂3 is a p× s1 matrix and B̂4 is of size p× (n−
p− s1). Then C1, C2 are rewritten as

C1 =


(Â1)p︸ ︷︷ ︸

invert. & diag.

0 0

0 0s1 0

0 0 0n−p−s1

 , (1.6)

C2 =

(B̂1)p B̂3 B̂4

B̂T
3 0s1 0

B̂T
4 0 0n−p−s1

 (1.7)

and U is partitioned to have the same block structure as C1, C2 :

U =

(U1)p U2 U3

U4 (U5)s1 U6

U7 U8 (U9)n−p−s1


Then

UTC1U =

UT
1 Â1U1 UT

1 Â1U2 UT
1 Â1U3

UT
2 Â1U1 UT

2 Â1U2 UT
2 Â1U3

UT
3 Â1U1 UT

3 Â1U1 UT
3 Â1U3

 . (1.8)

From (1.4) and (1.8), we have UT
1 Â1U1 = A1. Since Â1, A1 are nonsingular, U1 must be

nonsingular. On the other hand, UT
1 Â1U2 = UT

1 Â1U3 = 0 with U1 and Â1 nonsingular,

there must be U2 = U3 = 0. The matrix U is then

U =

(U1)p 0 0

U4 (U5)s1 U6

U7 U8 (U9)n−p−s1


and

UTC2U =

B̄1 B̄2 B̄3

B̄T
2 0 0

B̄T
3 0 0

 , (1.9)
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where B̄1 = UT
1 B̂1U1 + UT

4 B̂
T
3 U1 + UT

7 B̂
T
4 U1 + UT

1 B̂3U4 + UT
1 B̂4U7; B̄2 = UT

1 B̂3U5 +

UT
1 B̂

T
4 U8 and B̄3 = UT

1 B̂3U6 + UT
1 B̂

T
4 U9. Both (1.9) and (1.5) imply that B3 = 0. This

is a contradition since B3 is nonsingular. We complete the proof.

Lemma 1.2.7 shows that the case q = 0 was not considered in Jiang and Li’s

study, and it is now included in our Lemma 1.2.8 below. The proof is almost similar to

that of Lemma 1.2.6. However, for the sake of completeness, we also show it concisely

here.

Lemma 1.2.8. Let both C1, C2 ∈ Sn be non-zero singular with rank(C1) = p < n.

There exists a nonsingular matrix U1, which diagonalizes C1 and rearrange its non-

zero eigenvalues as

C̃1 = UT
1 C1U1 =

 (C11)p︸ ︷︷ ︸
invert. & diag.

0

0 0n−p

 , (1.10)

while the same congruence U1 puts C̃2 = UT
1 C2U1 into two possible forms: either

C̃2 = UT
1 C2U1 =

(
(C21)p C22

CT
22 0n−p

)
, (1.11)

or

C̃2 = UT
1 C2U1 =


(C21)p 0 C25

0 (C26)s1︸ ︷︷ ︸
invert. & diag.

0

CT
25 0 0n−p−s1

 . (1.12)

where C11 is a nonsingular diagonal matrix, C11 and C21 have the same dimension of

p× p, C26 is a s1× s1 nonsingular diagonal matrix, s1 ≤ n− p. If s1 = n− p then C25

does not exist.

Proof. One first finds an orthogonal matrix Q1 such that

C̃1 = QT
1C1Q1 = diag(diag(α1, α2, . . . , αp)︸ ︷︷ ︸

=(C11)p, invert.

, 0n−p); (1.13)

QT
1C2Q1 =

(M21)p M22

MT
22 (M23)n−p︸ ︷︷ ︸

sym.

 . (1.14)

We see that (1.13) is already in the form of (1.10). If M23 = 0 in (1.14),

C̃2 = QT
1C2Q1 =

(
(M21)p M22

(M22)
T 0n−p

)
,
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which is (1.11).

Otherwise, rankM23 := s1 ≥ 1. Let P1 be an orthogonal matrix to diagonalize

the symmetric M23 as

P T
1 M23P1 = diag( (C26)s1︸ ︷︷ ︸

invert. & diag.

, 0n−p−s1).

Define H1 = diag(Ip, (P1)n−p) and compute

HT
1 Q

T
1C2Q1H1 =

(M21)p C24 C25

CT
24 (C26)s1 0

CT
25 0 0n−p−s1

 ,

where (C24, C25)p×(n−p) = M22P1. Define further that

V1 =

 Ip 0 0

−C−1
26 C

T
24 Is1 0

0 0 In−p−s1

 ; and U1 = Q1H1V1.

Note that the matrix H1V1 does not change QT
1C1Q1 that we have

C̃1 = UT
1 C1U1 = V T

1 HT
1 Q

T
1C1Q1H1V1 = QT

1C1Q1 (as in (1.13))

C̃2 = UT
1 C2U1 = V T

1 HT
1 Q

T
1C2Q1H1V1

=


M21 − C24C

−1
26 (C24)

T︸ ︷︷ ︸
=(C21)p

0 C25

0 (C26)s1 0

CT
25 0 0n−p−s1

 .

These are what we need in (1.10) and (1.12).

Using Lemma 1.2.6, Jiang and Li proposed the following result and algorithm.

Lemma 1.2.9 ([37], Theorem 6). Two singular matrices C1 and C2, which take the

forms (1.2) and (1.3), respectively, are R-SDC if and only if A1 and B1 are R-SDC
and B2 is a zero matrix or r = n− p− s1 = 0 (B2 does not exist).
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Algorithm 1 Procedure to check whether two matrices C1 and C2 are R- SDC
INPUT: Matrices C1, C2 ∈ Sn

1: Apply the spectral decomposition to C1 such that A := QT
1C1Q1 = diag(A1, 0),

where A1 is a nonsingular diagonal matrix, and express B := QT
1C2Q1 =(

B1 B2

BT
2 B3

)
.

2: Apply the spectral decomposition to B3 such that V T
1 B3V1 =

(
B6 0

0 0

)
, where

B6 is a nonsingular diagonal matrix; define Q2 := diag(I, V1) and set Â :=

QT
2AQ2 = A and

B̂ := QT
2BQ2 =

 B1 B4 B5

BT
4 B6 0

BT
5 0 0


3: If B5 exists and B5 ̸= 0 then

4: return “not R-SDC,” else

5: Define

Q3 :=

 Ip 0p×q 0p×(n−p−q)

−B−1
6 BT

4 Iq 0q×(n−p−q)

0(n−p−q)×p 0(n−p−q)×q I(n−p−q)

 ;

further define Ã := QT
3 ÂQ3 = Â = A,

B̃ := QT
3 B̂Q3 =

 B1 −B4B
−1
6 BT

4 0 0

0 B6 0

0 0 0


6: If there exists a nonsingular matrix V2 such that V −1

2 A−1
1 (B1 − B4B

−1
6 BT

4 )V2 =

diag(λ1In1 , . . . , λtInt), then

7: Find Rk, k = 1, 2, . . . , t, which is a spectral decomposition matrix of the kth di-

agonal block of V T
2 A1V2; Define R := diag(R1, R2, . . . , Rk), Q4 := diag(V2R, I),

and P := Q1Q2Q3Q4

8: return two diagonal matrices QT
4 ÃQ4 and QT

4 B̃Q4 and the corresponding

congruent matrix P , else

9: return “not R-SDC”

10: end if

11: end if 16



As mentioned, the case q = 0 was not considered in Lemma 1.2.6, Lemma 1.2.9

thus does not completely characterize the SDC of C1 and C2. We now apply Lemma

1.2.8 to completely characterize the SDC of C1 and C2. Note that if C̃1 = UT
1 C1U1

and C̃2 = UT
1 C2U1 are put into (1.10) and (1.12), the SDC of C1 and C2 is solved by

Lemma 1.2.9. Here, we would like to add an additional result to supplement Lemma

1.2.9: Suppose C̃1 and C̃2 are put into (1.10) and (1.11). Then C̃1 and C̃2 are R-SDC
if and only if C11 (in (1.10)) and C21 (in (1.11)) are R-SDC; and C22 = 0 (in (1.11)).

The new result needs to accomplish a couple of lemmas below.

Lemma 1.2.10. Suppose that A,B ∈ Sn of the following forms are R-SDC

A = diag((A1)p︸ ︷︷ ︸
invert.

, 0n−p), B =

(
(B1)p (B2)p×(n−p)

BT
2 0n−p

)
(1.15)

with A1 nonsingular and p < n. Then, the congruence P can be chosen to be

P =

(P1)p︸ ︷︷ ︸
invert.

0

P3 P4

 such that P TAP =

(P T
1 A1P1)p︸ ︷︷ ︸

invert.&diag.

0

0 0n−p


and

P TBP =


P T
1 B1P1 + P T

1 B2P3 + P T
3 B

T
2 P1︸ ︷︷ ︸

diag.

P T
1 B2P4

P T
4 B

T
2 P1︸ ︷︷ ︸

=0

0n−p


and thus B must be singular. In other words, if A and B take the form (1.15) and B

is nonsingular, then {A,B} cannot be R-SDC.

Proof. Since A,B are R-SDC and rank(A) = p by the assumption, we can choose the

congruence P so that the p non-zero diagonal elements of P TAP are arranged to the

north-western corner, while P TBP is still diagonal. That is,

P =

(
(P1)p P2

P3 (P4)n−p

)
=⇒ P TAP =


(P T

1 A1P1)p︸ ︷︷ ︸
invert. & diag.

(P T
1 A1P2)p×(n−p)︸ ︷︷ ︸

= 0

P T
2 A1P1︸ ︷︷ ︸
=0

(P T
2 A1P2)n−p︸ ︷︷ ︸

= 0

 .

Since P T
1 A1P1 is nonsingular diagonal and A1 is nonsingular, P1 must be invertible.

Then, the off-diagonal P T
1 A1P2 = 0 implies that P2 = 0p×(n−p). Consequently, P and

P TBP are of the following forms

P =

(
P1 0

P3 P4

)
and P TBP =


P T
1 B1P1 + P T

1 B2P3 + P T
3 B

T
2 P1︸ ︷︷ ︸

diag.

P T
1 B2P4

P T
4 B

T
2 P1︸ ︷︷ ︸

=0

0n−p

 .
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Notice that P TBP is singular, and thus B must be singular, too. The proof is thus

complete.

Lemma 1.2.11. Let A,B ∈ Sn take the following formats

A = diag((A1)p, 0n−p), B =

(
(B1)p (B2)p×(n−p)

BT
2 0n−p

)
,

with A1 nonsingular and B2 of full column rank. Then, kerA
⋂
kerB = {0}.

Lemma 1.2.12. Let A,B ∈ Sn with kerA
⋂
kerB = {0}. If αA + βB is singular for

all real couples (α, β) ∈ R2, then A and B are not R-SDC.

Proof. Suppose contrarily that A and B were R-SDC by a congruence P such that

P TAP = D1 = diag(a1, a2, . . . , an); P TBP = D2 = diag(b1, b2, . . . , bn).

Then, P T (αA + βB)P = diag(αa1 + βb1, αa2 + βb2, . . . , αan + βbn). By assumption,

αA+βB is singular for all (α, β) ∈ R2 so that at least one of αai+βbi = 0,∀(α, β) ∈ R2.

Let us say αa1 + βb1 = 0,∀(α, β) ∈ R2. It implies that a1 = b1 = 0. Let e1 =

(1, 0, . . . , 0)T be the first unit vector and notice that Pe1 ̸= 0 since P is nonsingular.

Then,

P TAPe1 = D1e1 = 0; P TBPe1 = D2e1 = 0 =⇒ 0 ̸= Pe1 ∈ kerA
⋂

kerB,

which is a contradiction.

Lemma 1.2.13. Let A,B ∈ Sn be both singular taking the following formats

A = diag((A1)p︸ ︷︷ ︸
invert.

, 0n−p);B =

(
(B1)p B2

BT
2 0n−p

)
,

with A1 nonsingular and B2 of full column-rank. Then A and B are not R-SDC.

Proof. From Lemma 1.2.11, we know that kerA ∩ kerB = {0}. If αA+ βB is singular

for all (α, β) ∈ R2, Lemma 1.2.12 asserts that A and B are not SDC. Otherwise, there

is (α̃, β̃) ∈ R2 such that α̃A+ β̃B is nonsingular. Surely, α̃ ̸= 0, β̃ ̸= 0. Then,

C =
α̃

β̃
A+B =

(
α̃

β̃
A1 +B1)p B2

BT
2 0

 is nonsingular .

By Lemma 1.2.10, A and C are not R-SDC. So, A and B are not R-SDC, either.
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Lemma 1.2.14. Let C1, C2 ∈ Sn be both singular and U1 be nonsingular that puts

C̃1 = UT
1 C1U1 and C̃2 = UT

1 C2U1 into (1.10) and (1.11) in Lemma 1.2.8. If C22 is

nonzero, C̃1 and C̃2 are not R-SDC.

Proof. By Lemma 1.2.13, if C22 is of full column-rank, C̃1 and C̃2 are not R-SDC. So
we suppose that C22 has its column rank q < n− p and set s = n− p− q > 0. There

is a (n− p)× (n− p) nonsingular matrix U such that C22U =
(
Ĉ22 0p×s

)
, where Ĉ22

is a p× q full column-rank matrix. Let Q = diag(Ip, U). Then,

Ĉ2 = QT C̃2Q =

(
Ip 0p×(n−p)

0(n−p)×p UT

)(
C21 C22

CT
22 0

)(
Ip 0p×(n−p)

0(n−p)×p U

)

=

C21 Ĉ22 0p×s

ĈT
22 0q 0q×s

0s×p 0s×q 0s

 ;

and

Ĉ1 = QT C̃1Q =

C11 0p×q 0p×s

0q×p 0q 0q×s

0s×p 0s×q 0s

 .

Observe that, by Lemma 1.2.13, the two leading principal submatrices

A =

(
C11 0p×q

0q×p 0q

)
, B =

(
C21 Ĉ22

ĈT
22 0q

)

of Ĉ1 and Ĉ2, respectively, are not R-SDC since C11 is nonsingular (due to (1.10)) and

Ĉ22 is of full column rank. By Lemma 1.1.6, Ĉ1 and Ĉ2 cannot be R-SDC. Then, C̃1

and C̃2 cannot be R-SDC, either. The proof is complete.

Now, Theorem 1.2.1 comes as a conclusion.

Theorem 1.2.1. Let C1 and C2 be two symmetric singular matrices of n× n. Let U1

be the nonsingular matrix that puts C̃1 = UT
1 C1U1 and C̃2 = UT

1 C2U1 into the format

of (1.10) and (1.11) in Lemma 1.2.8. Then, C̃1 and C̃2 are R-SDC if and only if C11,

C21 are R-SDC and C22 = 0p×r, where r = n− p.

When more than two matrices involved, the aforementioned results no longer hold

true. Specifically, for more than two real symmetric matrices, Jiang and Li [37] need a

positive semidefiniteness assumption of the matrix pencil. Their results can be shortly

reviewd as follows.
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Theorem 1.2.2 ([37], Theorem 10). If there exists λ = (λ1, . . . , λm) ∈ Rm such that

λ1C1 + . . . + λmCm ≻ 0, where, without loss of generality, λm is assumed not to be

zero, then C1, . . . , Cm are R-SDC if and only if P TCiP commute with P TCjP, ∀i ̸= j,

1 ≤ i, j ≤ m− 1, where P is any nonsingular matrix that makes

P T (λ1C1 + . . .+ λmCm)P = I.

If λ1C1 + . . . + λmCm ⪰ 0, but there does not exist λ = (λ1, . . . , λm) ∈ Rm such

that λ1C1 + . . . + λmCm ≻ 0 and suppose λm ̸= 0, then a nonsingular matrix Q1 and

the corresponding λ ∈ Rm are found such that

Cm := Q1
T (λ1C1 + λ2C2 + ...+ λmCm)Q1 = diag(Ip, 0),

and

Ci = Q1
TCiQ1 =

(
Ci

1 Ci
2

(Ci
2)T Ci

3

)
(1.16)

where dimCi
1 = dimIp < n. If all Ci

3, i = 1, 2, . . . ,m, are R-SDC, then, by rearranging

the common 0’s to the lower right corner of the matrix, there exists a nonsingular

matrix Q2 = diag(Ip, V ) such that

Am = Q2
TCmQ2 = diag(Ip, 0) (1.17)

and

Ai = Q2
TCiQ2 =

 Ai
1 Ai

2 Ai
4

(Ai
2)T Ai

3 0

(Ai
4)T 0 0

 (1.18)

where Ai
1 = C1

i , Ai
3, i = 1, 2, . . . ,m − 1, are all diagonal matrices and do not have

common 0’s in the same positions.

For any diagonal matrices D and E, define supp(D) := {i|Dii ̸= 0} and supp(D)∪
supp(E) := {i|Dii ̸= 0 or Eii ̸= 0}.

Lemma 1.2.15 ([37], Lemma 12). For k (k ≥ 2) n × n nonzero diagonal matrices

D1, D2, . . . , Dk, if there exists no common 0’s in the same position, then the following

procedure will find µi ∈ R, i = 1, 2, . . . , k, such that
∑k

i=1 µiD
i is nonsingular.

Step 1. Let D = D1, µ1 = 1 and µi = 0, for i = 1, 2, . . . , n, j = 1.

Step 2. Let D∗ = D + µj+1D
j+1 where µj+1 =

s

n
, s ∈ {0, 1, 2, . . . , n} with s being

chosen such that D∗ = D + µj+1D
j+1 and supp(D∗) = supp(D) ∪ supp(Dj+1);

Step 3. Let D = D∗, j = j + 1; if D is nonsingular or j = n, STOP and output

D; else, go to Step 2,
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Define

D =
m−1∑
i=1

λiAi =

 D1 D2 D4

DT
2 D3 0

DT
4 0 0

 (1.19)

where µi, i = 1, 2, . . . ,m− 1, are chosen, via the procedure in Lemma 1.2.15, such that

D3 is nonsingular.

Theorem 1.2.3 ([37], Theorem 13). If C(λ) = λ1C1 + . . .+ λmCm ⪰ 0, but there does

not exist λ ∈ Rm such that C(λ) = λ1C1 + . . . + λmCm ≻ 0 and suppose λm ̸= 0, then

C1, C2, . . . , Cm are R-SDC if and only if C1, . . . , Cm−1 and C(λ) = λ1C1+. . .+λmCm ⪰
0 are R-SDC if and only if A3

i (defined in (1.16)), i = 1, 2, . . . ,m are R-SDC, and the

following conditions are also satisfied:

1. D4 = 0 and A4
i = 0, i = 1, 2, . . . ,m− 1.

2. A2
i = D2D

−1
3 A3

i , i = 1, 2, . . . ,m− 1.

3. A1
i −A2

iD
−1
3 DT

2 , i = 1, 2, . . . ,m− 1, mutually commute, where A1
i , A

2
i , A

3
i and A4

i

are defined in (1.18) and D is defined in (1.19).

We notice that the assumption for the positive semidefiniteness of a matrix pencil

is very restrictive. It is not difficult to find a counter example. Let

C1 =



1 1 0 0 0 0

1 −1 0 0 0 0

0 0 2 0 0 0

0 0 0 −2 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


; C2 =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 3 0 0 0

0 0 0 −3 0 0

0 0 0 0 4 0

0 0 0 0 0 −4


;

C3 =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


.
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We see that C1, C2, C3 are R-SDC by a nonsingular matrix

P =



1 −1 0 0 0 0√
2− 1

√
2 + 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

However, we can check that there exists no positive semidefinite linear combination

of C1, C2, C3 because the inequality λ1C1 + λ2C2 + λ3C3 ⪰ 0 has no solution λ =

(λ1, λ2, λ3) ∈ R3, λ ̸= 0.

For a set of more than two Hermitian matrices, Binding [7] showed that the SDC

problem can be equivalently transformed to the SDS type under the assumption that

there exists a nonsingular linear combination of the matrices.

Lemma 1.2.16 ([7], Corollary 1.3). Let C1, C2, . . . , Cm be Hermitian matrices. If

C(λ) = λ1C1 + . . . + λmCm is nonsingular for some λ = (λ1, λ2, . . . , λm) ∈ Rm. Then

C1, C2, . . . , Cm are ∗-SDC if and only if C(λ)−1C1,C(λ)
−1C2, . . . ,C(λ)

−1Cm are SDS.

As noted in Lemma 1.1.5, C(λ)−1C1,C(λ)
−1C2, . . . ,C(λ)

−1Cm are SDS if and only

if each of which is diagonalizable and C(λ)−1Ci commutes with C(λ)−1Cj, i < j.

The unsolved case when C(λ) = λ1C1 + . . . + λmCm is singular for all λ ∈ Rm is

now solved in this dissertation. Please see Theorem 2.1.4 in Chapter 2.

A similar result but for complex symmetric matrices has been developed by Bus-

tamante et al. [11]. Specifically, the authors showed that the SDC problem of complex

symmetric matrices can always be equivalently rephrased as an SDS problem.

Lemma 1.2.17 ([11], Theorem 7). Let C1, C2, . . . , Cm ∈ Sn(C) have maximum pencil

rank n. For any λ0 = (λ1, . . . , λm) ∈ Cm, C(λ0) =
∑m

i=1 λiCi with rankC(λ0) = n then

C1, C2, . . . , Cm are C-SDC if and only if, C(λ0)
−1C1, . . . ,C(λ0)

−1Cm are SDS.

When maxλ∈Cm rankC(λ) = r < n and dim
⋂m

j=1KerCj = n − r, there must

exist a nonsingular Q ∈ Cn×n such that QTCiQ = diag(C̃i, 0n−r). Fix λ0 ∈ S2m−1,

where S2m−1 := {x ∈ Cm, ∥x∥ = 1}, ∥.∥ denotes the usual Euclidean norm, such that

r = rankC(λ0). Reduced pencil C̃i then has nonsingular C̃(λ0).

Let Lj := C̃(λ0)
−1C̃j, j = 1, 2, . . . ,m, be r× r matrices, the SDC problem is now

rephrased into an SDS one as follows.
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Lemma 1.2.18 ([11], Theorem 14). Let C1, C2, . . . , Cm ∈ Sn(C) have maximum pencil

rank r < n. Then C1, C2, . . . , Cm ∈ Sn(C) are C-SDC if and only if dim
⋂m

j=1 KerCj =

n− r and L1, L2, . . . , Lm are SDS.
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Chapter 2

Solving the SDC problems of

Hermitian matrices and real

symmetric matrices

This chapter is devoted to presenting the SDC results first for a collection of

Hermitian matrices and later for a collection of real symmetric matrices. In Section

2.1 we show the SDC results of Hermitian matrices, i.e., all matrices Ci ∈ C are Her-

mitian. We first provide some equivalent conditions for C to be SDC. Interestingly,

one of these conditions requires a positive definite solution to an appropriate system

of linear equations over Hermitian matrices. Based on this theoretical result, we pro-

pose a polynomial-time algorithm for numerically solving the Hermitian SDC problem.

The proposed algorithm is a combination of (i) detecting whether the initial matrix

collection is simultaneously diagonalizable via congruence by solving an appropriate

semidefinite program and (ii) using an Jacobi-like algorithm for simultaneously diago-

nalizing (via congruence) the new collection of commuting Hermitian matrices derived

from the previous stage. Illustrative examples and numerical tests with Matlab are

also presented. In Section 2.2 we present a constructive and inductive method for

finding the SDC conditions of real symmetric matrices. Such a constructive approach

helps conclude whether C is SDC or not and construct a congruence matrix R if it is.

2.1 The Hermitian SDC problem

This section present two methods for solving the Hermitian SDC problem: The

max-rank method and the SDP method. The results are based on [42] by Le and
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Nguyen.

2.1.1 The max-rank method

The max-rank method based on Theorem 2.1.4 below, in which it requires a max

rank Hermitian pencil. To find this max rank we will apply the Schmüdgen’s procedure

[56], which is summaried as follows. Let F ∈ Hn partition as

F =

(
α β

β∗ F̂

)
, α ∈ R.

We then have the relations

X+X− = X−X+ = α2.In, α
4F = X+F̃X∗

+, F̃ = X−FX∗
−, (2.1)

where

X± =

(
α 0

±β∗ αIn−1

)
, F̃ =

(
α3 0

0 α(αF̂ − β∗β)

)
:=

(
α3 0

0 F1

)
∈ Hn. (2.2)

We now apply (2.1) and (2.2) to the pencil F = C(λ) = λ1C1+λ2C2+. . .+λmCm,

where Ci ∈ Hn, λ ∈ Rm. In the situation of Hermitian matrices, we have a constructive

proof for Theorem 2.1.1 that leads to a procedure for determining a maximum rank

linear combination.

Fistly, we have the following lemma by direct computations.

Lemma 2.1.1. Let A = (aij) ∈ Hn and Pik be the (1k)-permutation matrix, i.e, that

is obtained by interchaning the columns 1 and k of the identity matrix. The following

hold true:

(i) If a11 = 0 and akk ̸= 0 (always real) for some k = 1, 2, . . . , n, then

P ∗
1kAP1k =

(
akk β

β∗ B

)
, B∗ = B.

(ii) Let S = In + eke
∗
t , where ek is the kth unit vector of Cn. Then the (t, t)th entry

of S∗AS is ã =: akk + att + akt + atk ∈ R. Moreover,

P ∗
1tS

∗ASP1t =

(
ã β

β∗ B

)
, B∗ = B.

As a consequence, if all diagonal entries of A are zero and akt has nonzero real

part for some 1 ≤ k < t ≤ n, then ã = akt + atk ̸= 0.
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(iii) Let T = In + ieke
∗
t , where i2 = −1. Then the (t, t)th entry of T ∗AT is ã =:

akk + att + i(atk − ātk) ∈ R. Moreover,

P ∗
1tT

∗ATP1t =

(
ã β

β∗ B

)
, B∗ = B.

As a consequence, if all diagonal entries of A are zero and akt has nonzero image

part for some 1 ≤ k < t ≤ n, then ã = i(atk − ātk).

Theorem 2.1.1. Let C = C(λ) ∈ F[λ]n×n be a Hermitian pencil, i.e, C(λ)∗ = C(λ) for

every λ ∈ Rm. Then there exist polynomial matrices X+,X− ∈ F[λ]n×n and polynomials

b, dj ∈ R[λ], j = 1, 2, . . . , n (note that b, dj are always real even when F is the complex

field) such that

X+X− = X−X+ = b2In (2.3a)

b4C = X+diag(d1, d2, . . . , dn)X
∗
+, (2.3b)

X−CX
∗
− = diag(d1, d2, . . . , dn). (2.3c)

Proof. We apply Schmüdgen’s procedure (2.1)-(2.2) step-by-step to C0 = C,C1, . . . ,

where

Ct−1 =

(
αt βt

β∗
t Ĉt

)
= C∗

t−1 ∈ Hn−t+1,Ct = αt(αtĈt − β∗β) ∈ Hn−t, αt ∈ R[λ],

for t = 1, 2, . . . , until there exists a diagonal or zero matrix Ck ∈ F[λ](n−k)×(n−k).

If the (1, 1)st entry of Ct is zero, by Lemma 2.1.1 we can find a nonsingular matrix

T ∈ Fn×n for that of T ∗CtT being nonzero. Therefore, we can assume every matrix Ct

has a nonzero (1, 1)st entry.

We now describe the process in more detail. At the first step, partition C0 as

C0 =

(
α1 β1

β∗
1 Ĉ1

)
, Ĉ∗

1 = Ĉ1 ∈ F[λ](n−1)×(n−1), 0 ̸= α1 ∈ R[λ].

Assign C1 = α1(α1Ĉ1 − β∗
1β1) ∈ Hn−1 and

X1± = X1±(λ) =

(
α1 0

±β∗
1 α1In−1

)
.

Then, by (2.2), we have

X1+X1− = X1−X1+ = α2
1In,

X1−CX
∗
1− =

(
α3
1 0

0 C1

)
:= C̃1, α

4
1C = X1+C̃1X

∗
1+.

(2.4)
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If C1 is diagonal, stop. Otherwise, let’s go to the second step by partitioning

C1 =

(
α2 β2

β∗
2 Ĉ2

)
and continue applying Schmüdgen’s procedure (2.2) to C1 in the

second step

Y2± =

(
α2 0

±β∗
2 α2In−2

)
,Y2−C1Y

∗
2− =

(
α3
2 0

0 C2

)
,C2 = α2(α2Ĉ2 − β∗

2β2) ∈ Hn−2.

Accumulating

X2− =

(
α2 0

0 Y2−

)
X1−,X2+ = X1+

(
α2 0

0 Y2+

)
and

X2−CX
∗
2− =

 α3
1α

3
2 0 0

0 α3
2 0

0 0 C2

 =

(
α3
2diag(α

3
1, α2) 0

0 C2

)
:= C̃2,

then X2−X2+ = X2+X2− = α2
1α

2
2In = b2In. The second step completes.

Suppose now we have at the (k − 1)th step that

X(k−1)−CX
∗
(k−1)− =

(
diag(d1, d2, . . . , dk−1) 0

0 Ck−1

)
:= C̃k−1,

where Ck−1 = C∗
k−1 ∈ F[λ](n−k+1)×(n−k+1), and d1, d2, . . . , dk−1 are all not identically

zero. If Ck−1 is not diagonal (and suppose that its (1, 1)st entry is nonzero), then

partition Ck−1 and go to the kth step with the following updates:

Ck−1 =

(
αk βk

β∗
k Ĉk

)
,Ck = αk(αkĈk − β∗

kβk), b =
k∏

t=1

αt,

Xk+ = X(k−1)+.

(
αkI 0

0 Yk+

)
,Xk− =

(
αkIk−1 0

0 Yk−

)
.X(k−1)−,

Xk−CX
∗
k− =

(
diag(d1, d2, . . . , dk−1, dk) 0

0 Ck

)
:= C̃k,

(2.5)

where Yk± =

(
αk 0

±β∗
k αkIn−k

)
and

dk = α3
k, dj = α3

j

k∏
t=j+1

α2
t , j = 1, 2, . . . , k − 1. (2.6)

The procedure immediately stops if Ck is diagonal, and X± in (2.3c) will be

Xk±.
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The proof of Theorem 2.1.1 gives a comprehensive update according to Schmügen’s

procedure. However, we only need the diagonal elements of C̃k to determine the max-

imum rank of C(λ) at the end. The following theorem allows us to determine such a

maximum rank linear combination.

Theorem 2.1.2. Use notation as in Theorem 2.1.1, and suppose Ck in (2.5) is diagonal

but every Ct, t = 0, 1, 2, . . . , k − 1, is not so. Consider the modification of (2.5) as

Ck−1 =

(
αk βk

β∗
k Ĉk

)
, Ck = αk(αkĈk − β∗

kβk),

Xk− =

(
Ik−1 0

0 Yk−

)
.X(k−1)−, Yk± =

(
αk 0

±β∗
k αkIn−k

)
,

Xk−CX
∗
k− =

(
diag(α3

1, α
3
2, . . . , α

3
k−1, α

3
k) 0

0 Ck

)
:= C̃k,

(2.7)

Moreover, let di = α3
i , i = 1, 2, . . . , k, and Ck = diag(dk+1, dk+2, . . . , dn), dj ∈ R[λ], j =

1, 2, . . . , n, and some of dk+1, dk+2, . . . , dn may be identically zero. The following hold

true.

(i) αt divides αt+1 (and therefore dt divides dt+1) for every t ≤ k − 1, and if k < n,

then αk divides every dj, j > k.

(ii) The pencil C(λ) has the maximum rank r if and only if there exists a permutation

such that C̃(λ) = diag(d1, d2, . . . , dr, 0, . . . , 0), dj is not identically zero for every

j = 1, 2, . . . , r. In addition, the maximum rank of C(λ) achieves at λ̂ if and only if

αk(λ̂) ̸= 0 or (
∏r

t=k+1 dt(λ̂)) ̸= 0, respectively, depends upon Ck being identically

zero or not.

Proof.

(i) The construction of C1, . . . ,Ck imply that αt divides αt+1, t = 1, 2, . . . , k − 1.

In particular, αk is divisible by αt,∀t = 1, 2, . . . , k − 1. Moreover, if k < n, then αk

divides dj,∀j = k + 1, . . . , n, (since Ck = αk(αkĈk − β∗
kβk) = diag(dk+1, dk+2, . . . , dn)),

provided by the formula of Ck in (2.7).

(ii) We first note that after an appropriate number of permutations, C̃k must be

of the form C̃k = diag(d1, d2, . . . , dk, . . . , dr, 0, . . . , 0), with d1, d2, . . . , dr not identically

zero. Moreover, k ≤ r, in which the equality occurs if and only if Ck is zero because Ct

is determined only when αt = Ct−1(1, 1) ̸= 0.
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Finally, since dk, . . . , dr are real polynomials, one can pick a λ̂ ∈ Rm such that∏r
t=k dt(λ̂) ̸= 0. By i), di(λ̂) ̸= 0 for all i = 1, . . . , r, and hence rankC(λ̂) = r is the

maximum rank of the pencil C(λ).

The updates of Xk− and dj as in (2.7) are really more simple than that in (2.3c).

Therefore, we use (2.7) to propose the following algorithm.

Algorithm 2 Schmüdgen-like algorithm determining maximum rank of a pencil.
INPUT: Hermitian matrices C1, . . . , Cm ∈ Hn.

OUTPUT: A real m-tuple λ̂ ∈ Rm that maximizes the rank of the pencil C =: C(λ).

1: Set up C0 = C and α1, C̃1 (containing C1), X1± as in (2.7).

2: k ← 1.

3: While Ck is not diagonal do

4: k ← k + 1.

5: Do the computations as in (2.7) to obtain αk,Xk−, C̃k containing Ck.

6: Endwhile

7: Pick a λ̂ ∈ Rm that satisfies Theorem 2.1.2 (ii).

Let us consider the following example to see how the algorithm works.

Example 2.1.1. Given singular matrices: C1 =

 −1 −2− 2i 0

−2 + 2i −3 0

0 0 0

 ;

C2 =

 1 i −i
−i 1 −1
i −1 2

 ; C3 =

 1 1 + i 2

1− i 2 2(1− i)

2 2(1 + i) 4

 .

C = xC1 + yC2 + zC3

=

 −x+ y + z −2x+ z + (−2x+ y + z)i 2z − yi

−2x+ z − (−2x+ y + z)i −3x+ y + 2z −y + 2z − 2zi

2z + yi −y + 2z + 2zi 2y + 4z


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and

α1 = −x+ y + z; β1 = (−2x+ z + (−2x+ y + z)i; 2z − yi);

Ĉ1 =

(
−3x+ y + 2z −y + 2z − 2zi

−y + 2z + 2zi 2y + 4z

)
;

C1 = α1(α1.Ĉ1 − β∗
1β1)

= α1

(
−5x2 + yz + 3xz −xy + 2xz + 2yz + i(−2xy + yz − 2xz)

−xy + 2xz + 2yz − i(−2xy + yz − 2xz) y2 − 2xy − 4xz + 6yz

)

We have

X1± := Y1± =

(
α1 0

±β∗
1 α1I2

)
and

X1−.C.X
∗
1− =

(
α3
1 0

0 C1

)
,

C1 =

(
α2 β2

β∗
2 Ĉ2

)
;

C2 = α2(α2.Ĉ2 − β∗
2 .β2) := γ

where

α2 = α1(−5x2 + yz + 3xz); β2 = α1(−xy + 2xz + 2yz + i(−2xy + yz − 2xz));

Ĉ2 = α1(y
2 − 2xy − 4xz + 6yz);

γ = α1.α
2
2(y

2 − 2xy − 4xz + 6yz)

− α2
1.α2(5x

2y2 + 8x2z2 + 5y2z2 + 4x2yz − 8xy2z + 4xyz2).

Y2− =

(
α2 0

−β∗
2 α2

)
;X2− =

(
1 0

0 Y2−

)
.X1−,

X2−.C.X
∗
2− =

(
diag(α3

1, α
3
2) 0

0 γ

)
.

We now choose α1, α2, γ such that the matrix X2−.C.X
∗
2− is nonsingular, for

example α1 = 1;α2 = −1 and γ = 19, corresponding to (x, y, z) = (1, 1, 1). Then

C = C1 + C2 + C3 =

 1 −1 2− i

−1 0 1− 2i

2 + i 1 + 2i 6

 with detC = −19.
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Now, we revisit a link between the Hermitian-SDC and SDS problems: A finite

collection of Hermitian matrices is ∗-SDC if and only if an appropriate collection of

same size matrices is SDS.

First, we present the necessary and sufficient conditions for simultaneous diago-

nalization via congruence of commuting Hermite matrices. This result is given, e.g.,

in [34, Theorem 4.1.6] and [7, Corollary 2.5]. To show how Algorithm 3 performs and

finds a nonsingular matrix simultaneously diagonalizing commuting matrices, we give

a constructive proof using only a matrix computation technique. The idea of the proof

follows from that of [37, Theorem 9] for real symmetric matrices.

Theorem 2.1.3. The matrices I, C1, . . . , Cm ∈ Hn,m ≥ 1 are ∗-SDC if and only if

they are commuting. Moreover, when this the case, there are ∗-SDC by a unitary matrix

(resp., orthogonal one) if C1, C2, . . . , Cm are complex (resp., all real).

Proof. If I, C1, . . . , Cm ∈ Hn,m ≥ 1 are ∗-SDC, then there exists a nonsingular matrix

U ∈ Cn×n such that U∗IU, U∗C1U, . . . , U
∗CmU are diagonal. Note that,

U∗IU = diag(d1, d2, . . . , dn) ≻ 0 (2.8)

Let D = diag(
1√
d1

, . . . ,
1√
dm

) and V = UD. Then V must be unitary and

V ∗CiV = DU∗CiUD is diagonal for every i = 1, 2, . . . ,m.

Thus V ∗CiV.V
∗CjV = V ∗CjV.V

∗CiV, ∀i ̸= j, and hence CiCj = CjCi, ∀i ̸= j.

Moreover, each V ∗CiV is real since it is Hermitian.

On the contrary, we prove by induction on m.

In the case m = 1, the proposition is true since any Hermitian matrix can be

diagonalized by a unitary matrix.

For m ≥ 2, we suppose the proposition holds true for m− 1 matrices.

Now, we consider an arbitrary collection of Hermitian matrices I, C1, . . . , Cm. Let

P be a unitary matrix that diagonalizes C1 :

P ∗P = I, P ∗C1P = diag(α1In1 , . . . , αkInk
),

where αi’s are distinct and real eigenvalues of C1. Since C1 and Ci commute for all

i = 2, . . . ,m, so do P ∗C1P and P ∗CiP. By Lemma 1.1.2, we have

P ∗CiP = diag(Ci1, Ci2, . . . , Cik), i = 2, 3, . . . ,m,

where each Cit is Hermitian of size nt.
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Now, for each t = 1, 2, . . . , k, since CitCjt = CjtCit, ∀i, j = 2, 3, . . . ,m, (by

CiCj = CjCi,) the induction hypothesis leads to the fact that

Int , C2t, . . . , Cmt (2.9)

are ∗-SDC by a unitary matrix Qt. Determine U = P diag(Q1, Q2, . . . , Qk). Then

U∗C1U = diag(α1In1, . . . , αkInk),

U∗CiU = diag(Q∗
1Ci1Q1, . . . , Q

∗
kCikQk), i = 2, 3, . . . ,m,

(2.10)

are all diagonal.

In the above proof, the fewer multiple eigenvalues the starting matrix C1 has, the

fewer number of collection as in (2.9) need to be solved. Algorithm 3 below takes this

observation into account at the first step. To this end, the algorithm computes the

eigenvalue decomposition of all matrices C1, C2, . . . , Cm for finding a matrix with the

minimum number of multiple eigenvalues.

Algorithm 3 Solving the ∗-SDC problem of commuting Hermitian matrices
INPUT: Commuting matrices C1, C2, . . . , Cm.

OUTPUT: Unitary matrix U making U∗C1U, . . . , U
∗CmU be all diagonal.

1: Pick a matrix with the minimum number of multiple eigenvalues, say, C1.

2: Find an eigenvalue decomposition of C1 : C1 = P ∗diag(α1In1 , . . . , αkInk
), n1 +

n2 + . . .+ nk = n, α1, . . . , αk are distinct real eigenvalues, and P ∗P = I.

3: Compute the diagonal blocks of P ∗CiP, i ≥ 2 :

P ∗CiP = diag(Ci1, Ci2, . . . , Cik), Cit ∈ Hni , ∀t = 1, 2, . . . , k.

where C2t, . . . , Cmt pairwise commute for every t = 1, 2, . . . , k.

4: For each t = 1, 2, . . . , k simultaneously diagonalize the collection of matrices

Int , C2t, . . . , Cmt by a unitary matrix Qt.

5: Define U = Pdiag(Q1, . . . , Qk).

In the example below, we see that when C1 has no multiple eigenvalue, the algo-

rithm 3 immediately gives the congruence matrix in one step.
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Example 2.1.2. Let

C1 =

(
1 1 + i

1− i 2

)
;C2 =

(
2 3 + 3i

3− 3i 5

)
;C3 =

(
−1 −2− 2i

−2 + 2i −3

)

be commuting matrices and C1 has two distinct eigenvalues, then we immediately find

a unitary matrix P =


√
3

3

√
6

6√
3

3
(1− i)

√
6

6
(i− 1)

 such that P ∗C1P =

(
3 0

0 0

)
,

P ∗C2P =

 8 0

0 −
√
6 + 3

9

 ; P ∗C3P =

 −15 0

0 −5

3

 are all diagonals.

Using Theorem 2.1.3, we describe comprehensively the SDC property of a col-

lection of Hermitian matrices in Theorem 2.1.4 below. Its results are combined from

[7] and references therein, but we restate and give a constructive proof leading to Al-

gorithm 4. It is worth mentioning that in Theorem 2.1.4 below, C(λ) is a Hermitian

pencil, i.e., the parameter λ appearing in the theorem is always real if F is the field of

real or complex numbers.

Theorem 2.1.4. Let 0 ̸= C1, C2, . . . , Cm ∈ Hn with dimC(
⋂m

t=1 kerCt) = q, (always

q < n.)

1. If q = 0, then the following hold:

(i) If detC(λ) = 0, for all λ ∈ Rm (over only real m-tuple λ), then C1, . . . , Cm

are not ∗-SDC.

(ii) Otherwise, there exists λ ∈ Rm such that C(λ) is nonsingular. The matri-

ces C1, . . . , Cm are ∗-SDC if and only if C(λ)−1C1, . . . ,C(λ)
−1Cm pairwise

commute and every C(λ)−1Ci, i = 1, 2, . . . ,m, is similar to a real diagonal

matrix.

2. If q > 0, then there exists a nonsingular matrix V such that

V ∗CiV = diag(Ĉi, 0q),∀i = 1, 2, . . . ,m, (2.11)

where 0q is the q × q zero matrix and Ĉi ∈ Hn−q with
⋂m

t=1 kerĈt = 0. Moreover,

C1, . . . , Cm are ∗-SDC if and only if Ĉ1, Ĉ2, . . . , Ĉm are ∗-SDC.

Proof.
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1. Suppose q = 0,

(i) If detC(λ) = 0, for all λ ∈ Rm (over only real m-tuple λ), we prove that

C1, . . . , Cm are not ∗-SDC. Assume the opposite, C1, . . . , Cm were ∗-SDC by a

nonsingular matrix P ∈ Cn×n and then

Ci = P ∗DiP,Di = diag(αi1, αi2, . . . , αin)

where Di is real matrix, forall i = 1, 2, . . . ,m. Moreover,

C(λ) =
m∑
i=1

λiCi =
m∑
i=1

λiP
∗DiP = P ∗(

m∑
i=1

λiDi)P.

The real polynomial (with real variable λ)

detC(λ) = (detP)2.Πn
j=1(

m∑
i=1

αijλi);λi ∈ R, i = 1, 2, . . . ,m,

is hence identically zero because of the hypothesis. But R[λ1, λ2, . . . , λm] is an

integer domain, and there must exist an identically zero factor, say, there exists

j ∈ {1, 2, . . . , n} such that (α1j, α2j, . . . , αmj) = 0.

Picking the vector 0 ̸= x with Px = ej, where ej is the jth unit vector in Cn, one

obtains

Cix = P ∗DiPx = P ∗Diej = 0,∀i = 1, 2, . . . ,m.

It implies that 0 ̸= x ∈
⋂m

t=1 kerCt, contradicting the hypothesis. Part (i) is thus

proved.

(ii) Otherwise, there exists λ ∈ Rm such that C(λ) is nonsingular.

Firstly, suppose C1, . . . , Cm are ∗-SDC by a nonsingular matrix P ∈ Cn×n, then

P ∗CiP are all real diagonal. As a consequence,

P−1C(λ)−1CiP = [P ∗C(λ)P ]−1(P ∗CiP )

is real diagonal for every i = 1, 2, . . . ,m. This yieds the pairwise commuta-

tivity of P−1C(λ)−1C1P, P
−1C(λ)−1C2P, . . . , P

−1C(λ)−1CmP and hence that of

C(λ)−1C1,C(λ)
−1C2, . . . ,C(λ)

−1Cm.

Conversely, suppose C(λ)−1C1,C(λ)
−1C2, . . . ,C(λ)

−1Cm pairwise commute and

every C(λ)−1Ci, i = 1, 2, . . . ,m, is similar to a real diagonal matrix. Then there

exists a nonsingular Q ∈ Cn×n such that Q−1C(λ)−1CiQ = Mi are all real diago-

nal.
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We have Q∗C(λ)Q.Mi = Q∗CiQ, i = 1, 2, . . . ,m. Since Ci is Hermitian, so is

Q∗CiQ. Then

Q∗C(λ)Q.Mi = Q∗CiQ = (Q∗CiQ)∗ = (Q∗C(λ)Q.Mi)
∗ = Mi.Q

∗C(λ)Q.

Therefore, we have

Q∗CiQ.Q∗CjQ =Q∗C(λ)Q.Mi.Q
∗C(λ)Q.Mj

=Q∗C(λ)Q.Mi.Mj.Q
∗C(λ)Q

=Q∗C(λ).Mj.Mi.Q
∗C(λ)Q

=Q∗C(λ).Mj.Q
∗C(λ)Q.Mi

=Q∗CjQ.Q∗CiQ

orQ∗C1Q,Q∗C2Q, . . . , Q∗CmQ pairwise commute. By the Theorem 2.1.3, I,Q∗C1Q,

Q∗C2Q, . . . , Q∗CmQ are ∗-SDC. Implying C1, C2, . . . , Cm are ∗-SDC.

2. Suppose q > 0, let C ∈ Cmn×n be the matrix containing C1, C2, . . . , Cm, and

C = UDV ∗ be a singular value decomposition. Since rankC = n − q, the last

q columns of V are an orthonormal basis of KerC =
⋂m

i=1KerCi. One then can

check that V ∗CiV has the form (2.11) for every i = 1, 2, . . . ,m.

Moreover, by Lemma 1.1.6, C1, . . . , Cm are ∗-SDC if and only if Ĉ1, Ĉ2, . . . , Ĉm

are ∗-SDC.

The following algorithm checks that the Hermitian matrices C1, C2, . . . , Cm are

∗-SDC or not.
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Algorithm 4 The SDC of Hermitian matrices in a link with SDS.
INPUT: Matrices C1, C2, . . . , Cm ∈ Hn

OUTPUT: Conclude whether C1, C2, . . . , Cm are ∗-SDC or not.

1: Compute a singular value decomposition C = U
∑

V ∗, of C = (C∗
1 , C

∗
2 , . . . , C

∗
m)

∗,∑
= diag(σ1, . . . , σn−q, 0, . . . , 0), σ1 ≥ σ2 ≥ . . . ≥ σn−q > 0, 0 ≤ q ≤ n− 1. Then

dimF(∩m
t=1kerCt) = q.

2: If q = 0 :

Step 1: If detC(λ) = 0, for all λ ∈ Rm, then C1, C2, . . . , Cm are not ∗-SDC. Else, go
to Step 2.

Step 2: Find a λ ∈ Rm such that C := C(λ) is nonsingular.

(a) If there exists i ∈ {1, 2, . . . ,m} such that C−1Ci is not similar to a

diagonally real matrix, then conclude the given matrices are not ∗-SDC.
Else, go to (b).

(b) If C−1C1, . . . ,C
−1Cm are not commuting, which is equivalent to that

CiC
−1Cj is not Hermitian for some i ̸= j, then conclude the given matrices

are not ∗-SDC. Else, they are ∗-SDC.

3: Else (q > 0) :

Step 3: For the singular value decomposition C = U
∑

V ∗ determined at the

beginning, the matrix V satisfies (2.11.) Pick the matrices Ĉi being the

(n− q)× (n− q) top-left submatrix of Ci.

Step 4: Go to Step 1 with the resulting matrices Ĉ1, . . . , Ĉm ∈ Hn−q.

In Algorithm 4, Step 1 checks whether the maximum rank of the pencil C(λ) is

strictly less than its size or not. This is because of the following equivalence:

detC(λ) = 0,∀λ ∈ Rn \ {0} ⇐⇒ max{rankC(λ) | λ ∈ Rm} < n.

The terminology “maximum rank linear combination” is due to this equivalence and

Lemma 1.1.4.

We now consider some examples in which all given matrices are singular. We

apply Theorem 2.1.2 and Theorem 2.1.4 to solve the Hermitian SDC problem.

Example 2.1.3. Given three matrices as in Example 2.1.1, we use Algorithm 4 to

check whether the matrices are ∗-SDC.
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Observe that C = C1 + C2 + C3 =

 1 −1 2− i

−1 0 1− 2i

2 + i 1 + 2i 6

 is nonsingular and

rank(C∗
1 , C

∗
2 , C

∗
3)

∗ = 3. So dim(
⋂3

i=1 kerCi) = 0.

C−1 =
1

19

 5 −10− 3i 1− 2i

−10 + 3i −1 3− 3i

1 + 2i 3 + 3i 1


and

A : = C−1C1 =
1

19

 21− 14i 20− i 0

12− 5i 29 + 14i 0

−13− 2i −7− 15i 0

 ;

B : = C−1C2 =
1

19

 4 + 11i −11 + 4i 12− 6i

−7 + 7i −7− 7i 10 + 4i

4 4i 1− 4i

 .

It is easy to check that AB ̸= BA. Therefore, by Theorem 2.1.4 (case 1(ii)),

C1, C2, C3 are not ∗-SDC.

Example 2.1.4. The matrices

C1 =

 1 3 −1
3 6 0

−1 0 −2

 , C2 =

 0 0 0

0 −3 2

0 2 −1

 , C3 =

 −1 −3 2

−3 −5 4

2 4 −3


are all singular since rank(C1) = rank(C2) = rank(C3) = 2. We furthermore have

dim(
⋂3

i=1 kerCi) = 0 since rank(C1 C2 C3)
T = 3. We will prove these matrices are not

SDC by applying Theorem 2.1.4 (case 1 (ii)) as follows. Consider the linear combination

C = xC1 + yC2 + zC3 =

 x− z 3x− 3z 2z − x

3x− 3z 6x− 3y − 5z 2y + 4z

2z − x 2y + 4z −2x− y − 3z


Applying Scmüdgen’s procedure we have

C̃1 = X1−CX
∗
1− =

(
(x− z)3 0

0 C1

)
, X1− =

 x− z 0 0

3z − 3x x− z 0

x− 2z 0 x− z


where

C1 = (x− z)

(
−(x− z)(3x+ 3y − 4z) (3x+ 2y − 2z)(x− z)

(3x+ 2y − 2z)(x− z) −(x− 2z)2 − (x− z)(2x+ y + 3z)

)
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=:

(
α β

β γ

)
.

Determine

X2− =

 1 0 0

0 α 0

0 −β α

X1−.

We then have

X2−CX
∗
2− =

 (x− z)3 0 0

0 α3 0

0 0 α(αγ − β2)

 .

Notice that none of the diagonal elements (x − z)3, α and α(αγ − β2) in the latest

matrix are identically zero. By Theorem 2.1.2, we pick (x, y, z) such that all these

elements do not vanish. For example, (x, y, z) = (2, 0, 3) yields α = 6, β = 0, γ = 3,

and α(αγ − β) = 108 ̸= 0. Then

X− =

 −1 0 0

3 −1 0

−4 0 −1

 , C = 2C1 + 3C3 =

 −1 −3 4

−3 −3 12

4 12 −13

 , rankC = 3.

In this case, (C−1C1)(C
−1C2) ̸= (C−1C2)(C

−1C1) although every one of C−1C1, C
−1C2,

C−1C3 is similar to a real diagonal matrix.

Example 2.1.5. The matrices

C1 =

 −1 −4 4

−4 −16 16

4 16 −16

 , C2

 0 0 0

0 −1 2

0 2 −4

 , C3 =

 −1 −3 2

−3 −9 6

2 6 −4


are all singular and dim(kerC1

⋂
kerC2

⋂
kerC3) = 1. This intersection is spanned by,

e.g., x = (−4, 2, 1). Consider the linear combination

C = xC1 + yC2 + zC3 =

 −x− z −4x− 3z 4x+ 2z

−4x− 3z −16x− y − 9z 16x+ 2y + 6z

4x+ 2z 16x+ 2y + 6z −16x− 4y − 4z

 .

Applying Schmüdgen’s procedure, we have

X1−CX
∗
1− =

(
(−x− z)3 0

0 C1

)
, X1− =

 −x− z 0 0

−4x− 3z −x− z 0

4x+ 2z 0 −x− z

 ,
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where

C1 = (−x− z)

(
xy + yz + zx −2(xy + yz + zx)

−2(xy + yz + zx) 4(xy + yz + zx)

)
=:

(
α β

β γ

)
.

Let

X2− =

 1 0 0

0 α 0

0 −β α

X1−.

We then have

X2−CX
∗
2− =

 (−x− z)3 0 0

0 α3 0

0 0 α(αγ − β2)

 ,

where

α = (−x− z)(xy + yz + zx),

β = 2(−x− z)(xy + yz + zx) = −2α,
γ = 4(−x− z)(xy + yz + zx) = 4α.

It is easy to check that αγ − β2 = 0 for all x, y, z. The procedure stops. We have

r = rankC(λ) = 2. Since
⋂3

i=1 kerCi = {(−4a, 2a, a) | a ∈ R}, dim(
⋂3

i=1 kerCi) = 1.

We now apply Theorem 2.1.4 (case 2) to prove that these matrices are not ∗-SDC.
Picking

Q =

 1 0 −4
0 1 2

4 −2 1

 ,

then

Q∗C1Q =

 −225 180 0

180 −144 0

0 0 0

 , Ĉ1 =

(
−225 180

180 −144

)
,

Q∗C2Q =

 −64 40 0

40 −25 0

0 0 0

 , Ĉ2 =

(
−64 40

40 −25

)
,
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Q∗C3Q =

 −49 49 0

49 −49 0

0 0 0

 , Ĉ3 =

(
−49 49

49 −49

)
.

We can check that det Ĉ = −441 ̸= 0 with Ĉ = −Ĉ1 + Ĉ2, and furthermore that Ĉ−1Ĉ1

and Ĉ−1Ĉ3 does not commute.

By Theorem 2.1.4 (case 1 (ii)), Ĉ1, Ĉ2, Ĉ3 are not ∗-SDC. Hence, neither C1, C2, C3.

2.1.2 The SDP method

Now, we give some equivalent ∗-SDC conditions for Hermitian matrices in the

following theorem.

Theorem 2.1.5. The following conditions are equivalent:

(i) The matrices C1, C2, . . . , Cm ∈ Hn are ∗-SDC.

(ii) There exists a nonsingular matrix P ∈ Cn×n such that P ∗C1P, P
∗C2P, . . . , P

∗CmP

commute.

(iii) There exists a positive definite X = X∗ ∈ Hn that solves the following systems:

CiXCj = CjXCi, 1 ≤ i < j ≤ m. (2.12)

We note that the theorem is also true for the real setting: If Ci’s are all real then the

corresponding matrices P,X in all conditions above can be all picked to be real.

Proof. (i) ⇒ (ii) If the matrices C1, C2, . . . , Cm ∈ Hn are ∗-SDC, then there is a

nonsingular P ∈ Cn×n such that P ∗C1P, P
∗C2P, . . . , P

∗CmP are diagonal. The

latter matrices clearly commute.

(ii) ⇒ (iii) Let P = QU be a polar decomposition, Q = Q∗ be positive definite, and

U be unitary. We have

(U∗Q∗CiQU)(U∗Q∗CjQU) = (P ∗CiP )(P ∗CjP ) = (P ∗CjP )(P ∗CiP )

= (U∗Q∗CjQU)(U∗Q∗CiQU), i ̸= j.

Consequently, QCiQ and QCjQ commute:

QCiQ.QCjQ = QCjQ.QCiQ, ∀i ̸= j.

Then CiQ
2Cj = CjQ

2Ci,∀i ̸= j. Therefore, (2.12) holds true for X = Q2.
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(iii) ⇒ (i) IfX is a positive definite matrix which satisfies (2.12), then Q can be picked

as the square root of X. From (2.12), the matrices QC1Q,QC2Q, . . . , QCmQ are

∗-SDC by Theorem 2.1.3. So are C1, C2, . . . , Cm.

Finally, suppose Ci’s are all real symmetric and let X ∈ Hn be a positive definite

matrix satisfying (2.12). Let Y, Z be the real and imaginary parts, respectively, of X.

Then Y T = Y and ZT = −Z. It is well-known in the literature that Y is also positive

definite. Substituting Y, Z into (2.12) and comparing the real and the imaginary parts,

one obtains

CiY Cj = CjY Ci, CiZCj = CjZCi, 1 ≤ i < j ≤ m.

The matrices
√
Y C1

√
Y , . . . ,

√
Y Cm

√
Y are R-SDC by an orthogonal matrix P, and

C1, . . . , Cm are R-SDC by
√
Y P. The orthogonality of P is due to Theorem 2.1.3.

Based on the Theorems 2.1.3 and 2.1.5, we give Algorithm 6, consisting of two

stages:

Stage 1: detect whether a collection of Hermitian matrices are SDC by solving a linear

system of the form (2.12) and obtaining commuting Hermitian matrices. This

stage is based on Theorem 2.1.5(iii), and it is the most significant contribution

of this section. In this stage, an SDP solvers is used to find a positive definite

matrix under the images of the initial Hermitian matrices under congruence (The

image of a matrix X under the congruence matrix P is defined as P ∗XP ) are

commuting; and

Stage 2: simultaneously diagonalize via congruence the resulting image matrices by a uni-

tary matrix.

Algorithm 3 can be applied to the second stage. However, it requires to compute

the eigenvalue decomposition of all matrices C1, . . . , Cm in step 1, while simultaneously

diagonalizing k collections of submatrices in step 4. This may cause high computa-

tional complexity. We hence prefer Algorithm 6 below to Algorithm 3 for this stage.

Algorithm 5 exploits the works in [10, 43], where the work in [10] proposes a Jacobi-

like algorithm for simultaneously diagonalizing two commuting normal matrices, and

that in [43] extends to several normal ones together with MATLAB implementations.

It is also worth mentioning that Algorithm 4 can be used for solving the Hermitian

SDC problem. However, in doing so, it needs some auxiliary steps. For example,

eigenvalue decomposition for matrices Ci’s; a maximum-rank linear combination and

its pseudoinverse; and determination of whether detC(λ) being identically zero on Rm

or not ( Algorithm 2). Algorithm 6 below does not do these things and does not care
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many cases as in Algorithm 4. It first reformulates and solves the problem of detecting

the SDC property as a semidefinite program, which is a famous numerical method

with many excellent toolboxes widely used in engineering and related areas, and then

performs an ideal Jacobi-like approximation [10, 43] for the resulting matrices.

The Jacobi-like method in [10, 43] can be summarized as follows. Suppose Ci =

[c
(i)
uv] ∈ Hn and let

off2 = off2(C1, . . . , Cm) =
m∑
i=1

∑
u̸=v

|c(i)uv|2, (2.13a)

R(u, v, c, s) = In + (c− 1)eue
T
u − s̄eue

T
v + seve

T
u + (c̄− 1)eve

T
v , (2.13b)

where c, s ∈ Crd with |c|2+ |s|2 = 1. R(u, v, c, s) is called a (u, v)-Givens or (u, v)-plane

rotation matrix, 1 ≤ u < v ≤ n.

It can be verified that for a given pair (c, s) and every pair (u, v) ∈ {1, . . . , n}2,
the following holds true:

off2(RC1R
∗, . . . , RCmR

∗) = off2(C1, . . . , Cm)−
m∑
i=1

(
|c(i)uv|2 + |c(i)vu|2

)
+

m∑
i=1

∣∣c2c̄(i)uv + cs(c̄(i)uu − c̄(i)vv )− s2c̄(i)vu

∣∣2
+

m∑
i=1

∣∣c2c(i)vu + cs(c(i)uu − c(i)vv )− s2c(i)uv

∣∣2 . (2.14)

In the methods [10, 43], at the loop with respect to each (u, v), it tries to find

c, s that makes off2(RC1R
∗, . . . , RCmR

∗) < off2(C1, . . . , Cm). The values of c, s can be

looked for, as shown in, e.g., [24], so that the last sum on the right-hand side of (2.14)

is minimized. This is equivalent to the minimization of the amount ∥Muvz∥2 with

Muv =


c̄
(1)
uv (c̄

(1)
uu − c̄

(1)
vv ) −c̄(1)vu

c
(1)
vu (c

(1)
uu − c

(1)
vv ) −c(1)vu

...
...

...

c̄
(m)
uv (c̄

(m)
uu − c̄

(m)
vv ) −c̄(m)

vu

c
(m)
vu (c

(m)
uu − c

(m)
vv ) −c(m)

vu

 , z =

c2sc
s2

 .

Note that ∥z∥2 = 1 and c, s can be parameterized as c = cos(θuv), s = eiϕuv sin(θuv),

(θuv, ϕuv) ∈ [−π
4
, π
4
] × [−π, π]. As mentioned in [10], minimizing the amount ∥Muvz∥2

may be “relatively complicated”, and it suffices to approximate this minimization prob-
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lem to one that minimizes

guv(c, s) =
m∑
i=1

(
|cs(c̄(i)uu − c̄(i)vv ) + c2c̄(i)uv − s2c̄(i)vu|+ |cs(c(i)uu − c(i)vv )− s2c(i)uv + c2c(i)vu|

)
(2.15)

in (c, s) defined above. The following algorithm is a pseudo-code of the work [43] we

record it here for convenience.

Algorithm 5 SDC of commuting Hermitian matrices [10, 43].

INPUT: Commuting Hermitian matrices C1, . . . , Cm ∈ Cn×n, a tolerance ϵ > 0.

OUTPUT: A unitary matrix U such that off2 ≤ ϵ
∑m

i=1 ∥Ci∥F =: νϵ.

1: Accumulate Q = In.

2: While off2 > νϵ do

3: For every pair (u, v), 1 ≤ u < v ≤ n, determine the rotation R(u, v, c, s) such

that (c, s) = (cos θuv, e
iϕ sin θuv) minimizes the function guv in (2.15).

4: Accumulate Q = QR(u, v, c, s), Ci = R(u, v, c, s)∗CiR(u, v, c, s), i = 1, . . . ,m.

5: Endwhile

For each pair (u, v), 1 ≤ u < v ≤ n, Algorithm 5, which summarizes the work

[43], requires: O(m) flops for approximating the minimum of g
(i)
uv in (2.15); O(n) flops

for updating Q = QR(u, v, c, s); O(mn) flops for updating m matrices

Ci = R(u, v, c, s)∗CiR(u, v, c, s).

The whole algorithm hence needs O(mn3) complex flops.

For m = 2, it is shown in [10] that Algorithm 5 locally quadratically converges.

By analogous methodology, this rate of convergence is still valid for m ≥ 2 ma-

trices.

We now exploit Algorithm 5 to propose our main algorithm below.
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Algorithm 6 Solving the Hermitian SDC problem.

INPUT:Hermitian matrices C1, C2, . . . , Cm ∈ Hn (not necessarily commuting).

OUTPUT: A nonsingular matrix U such that U∗CiU ’s are diagonal (if exists).

1: Compute n− q = rank(C1 . . . Cm).

2: If q = 0 then

3: Solve the system (2.12) by using a SDP solver.

4: If ∃P ≻ 0 solving (2.12) then

5: Compute the square root Q of P, Q2 = P.

6: Apply Algorithm 5 to the matrices QCiQ’s and obtain a unitary matrix V.

7: Return U = QV.

8: else: Conclude the given matrices are not SDC.

9: endif

10: else

11: Compute a SVD of (C1 . . . Cm) := UΛV ∗.

12: Obtain the matrices Ĉi as in (2.1) from V ∗CiV.

13: Similarly proceed as the case q = 0 for the matrices Ĉi.

14: endif

To illustrate Algorithm 6, we consider the following examples.

Example 2.1.6. Let

C1 =

 1 3 −2
3 16 −10
−2 −10 6

 , C2 =

 0 0 0

0 −3 2

0 2 −1

 , C3 =

 −1 −3 2

−3 −5 4

2 4 −3

 .

To apply Theorem 2.1.5, we need to find

X =

 x y z

y t u

z u v

 ≻ 0
(
⇔ x > 0, xt > y2, det(X) > 0

)
(2.16)
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such that

C1XC2 = (C1XC2)
∗, C1XC3 = (C1XC3)

∗, C2XC3 = (C2XC3)
∗.

By directly computation,

C1XC2 = (C1XC2)
∗ ⇔


12u −9t −4v −3y +2z = 0

−7u +6t +2v +2y −z = 0

2u +2t −2v +z = 0,

C1XC3 = (C1XC3)
∗ ⇔


40u −33t −12v −11y +6z = 0

7u −6t −2v −2y +z = 0

18u −14t −6v −4y +3z = 0,

C2XC3 = (C2XC3)
∗ ⇔


−12u +9t +4v +3y −2z = 0

4u −2t −2v +z = 0

7u −6t −2v −2y +z = 0.

Combining the linear equations above, we obtain

u = 2y, t = y, v = 3y +
z

2
.

Let us pick y = 1, z = 4, x = 6 with which X =

 6 1 4

1 1 2

4 2 5

 ≻ 0 satisfies CiXCj =

CjXCi, 1 ≤ i < j ≤ 3. Thus three initial matrices are R-SDC on R, and so are they

on C.

Example 2.1.7. As shown in [11], the matrices C1 =

[
0 1

1 1

]
, C2 =

[
1 1

1 0

]
are C-SDC.

However, they are not ∗-SDC by Theorem 2.1.4 since C1 is nonsingular and

C−1
1 C2 =

[
0 −1
1 1

]

has only complex eigenvalues 1±i
√
3

2
. Similarly, they are not R-SDC by Theorem 1.2.1.

We can also check this by applying Theorem 2.1.5 as follows. The matrices are

∗-SDC if and only if there is a positive definite matrix X =

[
x y

y z

]
≻ 0, which is

equivalent to x > 0 and xz > y2 (it suffices to deal with the real world of X) such that

C1XC2 = C2XC1 (= (C1XC2)
∗) .

This is equivalent to {
x > 0, xz > y2

x+ y + z = 0.
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The last condition is impossible to satisfy since there do not exist x, z > 0 such that

xz > y2 = (x+ z)2. Thus C1 and C2 are not ∗-SDC on R.

We finish this part by stating the relationship between the SDC problems for

arbitrarily square and Hermitian matrices. The study of the Hermitian SDC problem

is again confirmed to be meaningful in SDC theory. The theorem below refers to the

notation of the Hermitian and skew-Hermitian parts, respectively, of a square matrix

A as follows:

H(A) = 1

2
(A+ A∗) = H(A)∗, S(A) = 1

2
(A− A∗) = −S(A)∗, i2 = −1.

We further note that both H(A) and iS(A) are Hermitian matrices.

Theorem 2.1.6. (see, e.g., in [35, Section 1.7, Problem 18]) The square matrices

A1, . . . , Am ∈ Fn×n are ∗-SDC if and only if so are H(At), iS(At), t = 1, . . . ,m.

Proof. If A1, . . . , Am are SDC by a nonsingular matrix P then P ∗AtP = Dt and

P ∗A∗
tP = D∗

t are diagonal for every t = 1, . . . ,m. As a result, P ∗H(At)P = H(Dt),

P ∗iS(At)P = iS(Dt) are real diagonal for every t = 1, . . . ,m.

The opposite direction is analogously proved by noticing that

At = H(At)− i[iS(At)], t = 1, . . . ,m.

Example 2.1.8. Given two square complex matrices

A1 =

 10− 28i −2 + 16i −6− 2i

−6 + 12i 2− 7i 2 + 2i

2 + 6i −2− 2i 2− 2i

 , A2 =

 21− 4i −8 + 5i −3− 6i

−8− i 4− i 3i

−3 + 6i −3i 3

 .

Their Hermitian and skew-Hermitian parts, respectively, are

H(A1) =

 10 −4 + 2i −2− 4i

−4− 2i 2 2i

−2 + 4i −2i 2

 , iS(A1) =

 28 −14 + 2i −2− 4i

−14− 2i 7 2i

−2 + 4i −2i 2

 ,

H(A2) =

 21 −8 + 3i −3− 6i

−8− 3i 4 3i

−3 + 6i −3i 3

 , iS(A2) =

 4 −2 0

−2 1 0

0 0 0

 .

For short, let C1, C2, C3, C4 be H(A1), iS(A1),H(A2), iS(A2) ∈ H3, respectively. By

Theorem 2.1.6, it suffices to check whether the four latter Hermitian matrices are ∗-
SDC or not. Once again we apply Theorem 2.1.5 to find a positive definite matrix
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X =

 x y z

ȳ t u

z̄ ū v

 ∈ H3. That is, we need x > 0, xt > |y|2, det(X) = (uyz̄ + uyz) +

xtv − x|u|2 − t|z|2 − v|y|2 > 0, x, t, v ∈ R, and CiXCj = CjXCi, 1 ≤ i < j ≤ 4.

These equations are equivalent to

9y1 −7y2 −18z1 +9z2 −5t +10u1 −5u2 = 0

14x −7y1 −10z1 −2z2 +5u1 = 0

−18x +7y2 +38z1 −10z2 +5t −20u1 +5u2 = 0

9x −5y1 −y2 −9z1 +5u1 = 0

18x −19y1 +5y2 −9z2 +5t +5u2 = 0

3y1 +y2 −6z1 +3z2 −t +2u1 −u2 = 0

2x −y1 +2z1 −2z2 −u1 = 0

6x +y2 −10z1 +2z2 −t +4u1 −u2 = 0

3x −y1 +y2 −3z1 +u1 = 0

6x −5y1 +y2 −3z2 +t +u2 = 0

2y1 −y2 −4z1 +2z2 −t +2u1 −u2 = 0

4x −y2 −8z1 +2z2 −t +4u1 −u2 = 0

−21y1 +35y2 +42z1 −21z2 +13t −26u1 +13u2 = 0

70x −35y1 −26z1 −10z2 +13u1 = 0

42x −35y2 −94z1 +26z2 −13t +52u1 −13u2 = 0

21x −13y1 −5y2 −21z1 +13u1 = 0

42x −47y1 +13y2 −21z2 +13t +13u2 = 0

−2y1 +4z1 −2z2 +t −2u1 +u2 = 0

2z1 −u1 = 0

4x −8z1 +2z2 −t +4u1 −u2 = 0

6y1 −5y2 −12z1 +6z2 −3t +6u1 −3u2 = 0

10x −5y1 −6z1 +3u1 = 0

−12x +5y2 +24z1 −6z2 +3t −12u1 +3u2 = 0

2x −y1 −2z1 +u1 = 0

4x −4y1 +y2 −2z2 +t +u2 = 0,
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and, is equivalent to

2x −y1 +2z1 −u1 = 0

y1 +2y2 +36z1 −18z2 −19u1 = 0

5y2 +76z1 −38z2 +t −40u1 +u2 = 0

2z1 −z2 −u1 = 0

z2 = 0

t −2u1 +u2 = 0.

A solution X of these equations must be in the form

X =

 z1 2z1 z1

2z1 4z1 − u2 2z1 + iu2

z1 2z1 − iu2 v

 , (2.17)

where z1 ∈ R is the real part of z, and u2 ∈ R is the imaginary part of u. In addition,

these parameters must satisfy z1 > 0,−z1u2 > 0,−z1u2(v+u2−z1) = det(X) > 0 to en-

sure the positive definiteness ofX. For example, one can pickX =

 1 2 1

2 5 2− i

1 2 + i 3


with respect to z1 = 1, u2 = −1, v = 3. This yields that C1, C2, C3, C4 are ∗-SDC.

Numerical experiment for this problem will be shown in Example 2.1.9 below.

2.1.3 Numerical tests

We now give some numerical tests illustrating Algorithm 6 implemented in Mat-

lab R2015a running on a PC with Intel Core i3 CPU 3.3GHz, 8GB RAM, Windows

10 x64 operating system. In each test, we set up a collection of Hermitian matrices

that are surely SDC as follows: Fix a nonsingular matrix P whose entries are randomly

taken from a uniform distribution on the interval (0, 1) and pick m diagonal matrices

Di whose diagonal elements are in (−1, 1), then construct Ci = P ∗DiP. These latter

matrices C1, . . . , Cm are clearly ∗-SDC by P. Note that the diagonal entries of Di could

be zero, making the matrices C1, . . . , Cm so generated be either singular or not.

The first stage of Algorithm 6 is implemented with the CVX toolbox [26] calling

SDPT3 version 4.0 [63] that solves the following semidefinite program

min{s | X − sIn ⪰ 0, s ≥ ϵ, CiXCj = CjXCi, 1 ≤ i < j ≤ m}, (2.18)

where the tolerance ϵ > 0 is given. We then exploit the Matlab function sqrtm.m,

which executes the algorithm proposed in [15], to compute the square root Q of X. For
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the second stage, thank to the works in [43] executing Algorithm 5. In our experiment,

we pick ϵ to be the floating-point relative accuracy eps of Matlab for the first stage,

while keeping their tolerance for the second stage to be eps to the power of 3
2
1[43].

Tables 2.1 and 2.2 show some numerical tests for real and complex Hermitian

SDC problems, respectively. Each result in these tables is the average of five executions.

Because the input matrices are randomly chosen, they should be linearly independent.

We hence pick m ≤ dimR Sn = n(n+1)
2

in Table 2.1 and m ≤ dimR Hn = n2 in Table

2.2.

The errors of the first stage are estimated by

Err1 = max
1≤i<j≤m

∥CiXCj − CjXCi∥2 ,

while those of the whole algorithm are estimated as

Err2 = max
1≤i≤m

∥U∗CiU − diag(diag(U∗CiU))∥2 ,

where diag(diag(X)) denotes the diagonal matrix whose diagonal is that of X.

Table 2.1: Numerical tests for the real Hermitian SDC problem.

m, number

of matrices

n, size of

matrices

Err1 Err2 CPU time (s)

6 3 4.71e-14 4,62e-14 2.37

10 10 5.55e-14 5.21e-12 9.67

15 10 6.50e-13 5.34e-12 17.56

20 10 2.98e-13 9.25e-11 24.49

30 10 7.92e-13 1.30e-11 86.05

10 15 2.55e-11 1.60e-10 59.69

30 15 2.31e-11 2.86e-10 632.23

10 20 8.80e-11 1.39e-10 337.37

Example 2.1.9. We now revisit the matrices in Example 2.1.8 with numerical perfor-

mance based on Algorithm 6. The first stage gives a positive definite matrix

X ≃

 257.78 515.55 257.78

515.55 1457 515.55− i 425.93

257.78 515.55 + i 425.93 1537.1

 .

1Matlab codes of Algorithm 6, and Julia codes for the first stage are available at https://

sites.google.com/a/qnu.edu.vn/le-thanh-hieu/experiments.
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Table 2.2: Numerical tests for the complex Hermitian SDC problem.

m, number

of matrices

n, size of

matrices

Err1 Err2 CPU time (s)

9 3 1.97e-13 2.30e-13 4.08

10 10 2.63e-13 4.12e-13 17.61

15 10 2.97e-13 8.29e-13 30.25

20 10 3.33e-12 2.41e-12 51.31

10 15 2.92e-11 4.02e-11 144.08

10 20 2.86e-10 2.48e-10 742.38

It turns out that this is a special case of that in (2.17) with z1 ≃ 257.78, u2 ≃ −425.93,
v ≃ 1537.1 and t ≃ 1457. Stage 2 of Algorithm 6 is performed for the matrices√
XCi

√
X, i = 1, . . . , 4, and one obtains the unitary matrix

Q ≃

 0.70043 −0.57468 −0.42326
0.66343 + i 0.043507 0.68597− i0.10828 0.16650 + i 0.21902

0.24454− i 0.087015 −0.42389 + i0.43089 0.46223− i 0.72904

 .

The final nonsingular matrix simultaneously diagonalizes C1, C2, C3, C4, and hence

A1, A2 is

U =
√
XQ ≃

 16.0554 −0.0000 0.0000

32.1108 20.6021− i 1.2155 0.0000

16.0554 1.2155 + i 20.6021 15.6427− i 24.6720

 .

Moreover,

U∗C1U ≃ diag(0, 0, 1706.8), U∗C2U ≃ diag(−515.55, 2129.63, 1706.80),
U∗C3U ≃ diag(515.55, 425.93, 2560.20), U∗C4U ≃ diag(0, 425.93, 0).

Example 2.1.10. Consider the two matrices

45 10 0 5 0 0

10 45 5 0 0 0

0 5 45 10 0 0

5 0 10 45 0 0

0 0 0 0 16.4 −4.8
0 0 0 0 −4.8 13.6


,



27.5 −12.5 −.5 −4.5 −2.04 3.72

−12.5 27.5 −4.5 −.5 2.04 −3.72
−.5 −4.5 24.5 −9.5 −3.72 −2.04
−4.5 −.5 −9.5 24.5 3.72 2.04

−2.04 2.04 −3.72 3.72 54.76 −4.68
3.72 −3.72 −2.04 2.04 −4.68 51.24


.

which are proved to be positive definite in [19, 52]. Algorithm 6 gives Err1≃ 2.89e−13

and Err2≃ 4.68e− 14.
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2.2 An alternative solution method for the SDC

problem of real symmetric matrices

As indicated in Theorem 2.1.5, equivalent conditions (i)-(iii) hold also for the

real setting, i.e., when Ci are all real symmetric. Then R and R∗CiR can be picked

to be real. However, solving an SDP problem for a positive definite matrix X may

not efficient, in particular when the dimension n or the number m of the matrices

is large. In this section, we propose an alternative method for solving the real SDC

problem of real symmetric matrices, i.e., Ci ∈ C are real symmetric and the congruence

matrice R and RTCiR are also real. The method is iterative which begins with only

two matrices C1, C2. If the two matrices C1, C2 are SDC, we include C3 to consider the

SDC of C1, C2, C3, and so forth. We divide C = {C1, C2, . . . , Cm} ⊂ Sn into two cases.

The first case is called the nonsingular collection (in Section 2.2.1), when at least one

Ci ∈ C is nonsingular. The other case is called the singular collection (in Section 2.2.3),

when all C ′
is in C are non-zero but singular. When C is a nonsingular collection, we

always assume that C1 is nonsingular. A nonsingular collection will be denoted by Cns,
while Cs represents the singular collection. The results are based on [49].

2.2.1 The SDC problem of nonsingular collection

Consider a nonsingular collection Cns = {C1, C2, . . . , Cm} ⊂ Sn and assume that

C1 is nonsingular. Let us outline the approach to determine the SDC of Cns. First, in
below Lemmas 2.2.1 we show that if Cns is R-SDC, it is necessary that

(N1) C−1
1 Ci, i = 2, 3, . . . ,m is real similarly diagonalizable;

(N2) CjC
−1
1 Ci is symmetric, for every i = 2, 3, . . . ,m and every j ̸= i.

Conversely, for the sufficiency, we use (N1) and (N2) to decompose, iteratively, all

matrices in Cns into block diagonal forms of smaller and smaller size until all of them

become the so-called non-homogeneous dilation of the same block structure (to be seen

later) with certain scaling factors. Then, the R-SDC of Cns is readily achieved.

Firstly, we have following lemma.

Lemma 2.2.1. If a nonsingular collection Cns is R-SDC, then

(N1) C−1
1 Ci, i = 2, 3, . . . ,m is real similarly diagonalizable;
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(N2) CjC
−1
1 Ci is symmetric, for every i = 2, 3, . . . ,m and every j ̸= i.

Proof. If C1, C2, . . . , Cm are SDC by a nonsingular real matrix P then

P TCiP = Di, i = 1, 2, . . . ,m,

are real diagonal. Since C1 is nonsingular, D1 is nonsingular and we have

Ci = (P T )−1DiP
−1; i = 1, 2, . . . ,m;C−1

1 = PD−1
1 P T .

Then P−1C−1
1 CiP = D−1

1 Di are real diagonal. That is C−1
1 Ci are real similarly diago-

nalizable, i = 2, 3, . . . ,m. For 2 ≤ i < j ≤ m, we have

CjC
−1
1 Ci =((P T )−1DjP

−1)(PD−1
1 P T )((P T )−1DiP

−1)

=(P T )−1DjD
−1
1 DiP

−1.

The matrices DjD
−1
1 Di are symmetric, so are CjC

−1
1 Ci.

By Theorem 2.2.1 and Theorem 2.2.2 below, we will show that (N1) and (N2)

are indeed sufficient for Cns to be SDC. Let us begin with Lemma 2.2.2.

Lemma 2.2.2. Let Cns = {C1, C2, . . . , Cm} ⊂ Sn be a nonsingular collection with C1

invertible. Suppose C−1
1 C2 is real similarly diagonalized by invertible matrix Q to have

r distinct eigenvalues β1, . . . , βr; each of multiplicity mt, t = 1, 2, . . . , r, respectively.

Then,

QTC1Q = diag ((A1)m1 , (A2)m2 , . . . , (Ar)mr)︸ ︷︷ ︸
m1+···+mr=n, each At: sym. invert.

; (2.19)

QTC2Q = diag(β1A1, β2A2 . . . , βrAr). (2.20)

In addition, if CjC
−1
1 C2, j = 3, 4, . . . ,m, are symmetric, we can further block

diagonalize C3, C4, . . . , Cm to adopt the same block structure as in (2.19), such that

QTCjQ = diag ((Cj1)m1 , (Cj2)m2 , . . . , (Cjr)mr)︸ ︷︷ ︸
each Cjt: sym.

j = 3, 4, . . . ,m. (2.21)

Proof. Since C−1
1 C2 is similarly diagonalizable by Q, by assumption, there is

J := Q−1C−1
1 C2Q = diag(β1Im1 , . . . , βrImr) (2.22)

with m1 +m2 + · · ·+mr = n. From (2.22), we have, for j = 1, 2, . . . ,m,

(QTCjQ)J = (QTCjQ)(Q−1C−1
1 C2Q) = QTCjC

−1
1 C2Q. (2.23)
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When j = 1, by substituting (2.22) into (2.23), we have

(QTC1Q)J = (QTC1Q) · diag(β1Im1 , . . . , βrImr) = QTC2Q. (2.24)

Since QTC1Q,QTC2Q are both real symmetric and J is diagonal, Lemma 1.1.2 asserts

that QTC1Q is a block diagonal matrix with the same partition as J. That is, we can

write

QTC1Q = diag((A1)m1 , (A2)m2 , . . . , (Ar)mr), (2.25)

which proves (2.19). Plugging both (2.25) and (2.22) into (2.24), we obtain

diag((A1)m1 , (A2)m2 , . . . , (Ar)mr)diag(β1Im1 , . . . , βrImr)

= diag(β1A1, . . . , βrAr) = QTC2Q,

which proves (2.20).

Finally, for j = 3, 4, . . . ,m in (2.23), due to the assumption that CjC
−1
1 C2 are

symmetric, so are QTCjC
−1
1 C2Q. By Lemma 1.1.2 again, QTCjQ are all block diagonal

matrices with the same partition as J, which is exactly (2.21).

Remark 2.2.1. When there is a nonsingular Q that puts QTC1Q and QTC2Q to

(2.19) and (2.20), we say that QTC2Q is a non-homogeneous dilation of QTC1Q with

scaling factors {β1, β2, . . . , βr}. In this case, since A1, A2, . . . , Ar are symmetric, there

exist orthogonal matrices Hi, i = 1, 2, . . . , r such that HT
i AiHi is diagonal. Let H =

diag(H1, H2, . . . , Hr), Q
TC1Q and QTC2Q are R-SDC by the congruence H. Then, C1

and C2 are R-SDC by the congruence QH.

For m = 2, Remark 2.2.1 and (N1) together give Theorem 1.2.1.

Another special case of Lemma 2.2.2 is when C−1
1 C2 has n distinct real eigenval-

ues.

Corollary 2.2.1. Let Cns = {C1, C2, . . . , Cm} ⊂ Sn be a nonsingular collection with

C1 invertible. Suppose C−1
1 C2 has n distinct real eigenvalues, i.e., r = n in Lemma

2.2.2. Then, C1, C2, . . . , Cm are SDC if and only if CiC
−1
1 C2 are symmetric for every

i = 3, . . . ,m.

Proof. If C1, C2, . . . , Cm are R-SDC, by (N2), we have CiC
−1
1 C2 are symmetric for every

i = 3, . . . ,m.

For the converse, since C−1
1 C2 has n distinct eigenvalues, it is similarly diagonal-

izable. By assumption, CiC
−1
1 C2 are symmetric. Then, by Lemma 2.2.2, the matrices

C1, C2, . . . , Cm can be decomposed into block diagonals, each block is of size one. So

C1, C2, . . . , Cm are R-SDC.
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It then comes with our first main result, Theorem 2.2.1, below.

Theorem 2.2.1. Let Cns = {C1, C2, . . . , Cm} ⊂ Sn, m ≥ 3 be a nonsingular collection

with C1 invertible. Suppose for each i the matrix C−1
1 Ci is real similarly diagonalizable.

If CjC
−1
1 Ci are symmetric for 2 ≤ i < j ≤ m, then there exists a nonsingular real

matrix R such that

RTC1R =diag(A1, A2, . . . , As),

RTC2R =diag(α2
1A1, α

2
2A2, . . . , α

2
sAs), (2.26)

. . . . . .

RTCmR =diag(αm
1 A1, α

m
2 A2, . . . , α

m
s As),

where A′
ts are nonsingular and symmetric, αi

t, t = 1, 2, . . . , s, are real numbers. When

the nonsingular collection Cns is transformed into the form of (2.26) by a congruence

R, the collection Cns is indeed R-SDC.

Proof. Suppose C−1
1 C2 is diagonalized by a nonsingular Q(1) with distinct eigenvalues

β
(1)
1 , β

(1)
2 , . . . , β

(1)

r(1)
having multiplicity m

(1)
1 ,m

(1)
2 , . . . ,m

(1)

r(1)
, respectively. Here the su-

perscript (1) denotes the first iteration. Since CjC
−1
1 C2 is symmetric for j = 3, 4, . . . ,m,

Lemma 2.2.2 assures that

C
(1)
1 = Q(1)TC1Q

(1) = diag ((A
(1)
1 )

m
(1)
1
, (A

(1)
2 )

m
(1)
2
, . . . , (A

(1)

r(1)
)
m

(1)

r(1)

)︸ ︷︷ ︸
sym. & invert.

, (2.27)

C
(1)
2 = Q(1)TC2Q

(1) = diag(β
(1)
1 A

(1)
1 , β

(1)
2 A

(1)
2 , . . . , β

(1)

r(1)
A

(1)

r(1)
), (2.28)

C
(1)
j = Q(1)TCjQ

(1) = diag (C
(1)
j1 , C

(1)
j2 , . . . , C

(1)

jr(1)
)︸ ︷︷ ︸

sym.

, j = 3, 4, . . . ,m; (2.29)

where all members in {C(1)
1 , C

(1)
2 , C

(1)
3 , . . . , C

(1)
m } adopt the same block structure, each

having r(1) diagonal blocks.

As for the second iteration, we use the assumption that C−1
1 C3 is similarly diag-

onalizable. Then,

C
(1)
1

−1
C

(1)
3 = diag

(
A

(1)
1

−1
C

(1)
31 , . . . , A

(1)

r(1)

−1
C

(1)

3r(1)

)
(2.30)

is also similarly diagonalizable. Since a block diagonal matrix is diagonalizable if and

only if each of its blocks is diagonalizable, (2.30) implies that each A
(1)
t

−1
C

(1)
3t , t =

1, 2, . . . , r(1) is diagonalizable. Let Q
(2)
t (the superscript (2) denotes the second itera-

tion) diagonalize A
(1)
t

−1
C

(1)
3t into lt distinct eigenvalues β

(2)
t1 , β

(2)
t2 , . . . , β

(2)
tlt

, each having

multiplicity m
(2)
t1 ,m

(2)
t2 , . . . ,m

(2)
tlt
, respectively. Then,

Q(2) = diag(Q
(2)
1 , Q

(2)
2 , . . . , Q

(2)

r(1)
)
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diagonalizes C
(1)
1

−1
C

(1)
3 .

Now, applying Lemma 2.2.2 to {A(1)
t , C

(1)
3t } for each t = 1, 2, . . . , r(1), we have

Q
(2)
t

T
A

(1)
t Q

(2)
t = diag ((A

(2)
t1 )m(2)

t1
, (A

(2)
t2 )m(2)

t2
, . . . , (A

(2)
tlt
)
m

(2)
tlt

)︸ ︷︷ ︸
sym. & invert.

; (2.31)

Q
(2)
t

T
C

(1)
3t Q

(2)
t = diag(β

(2)
t1 A

(2)
t1 , β

(2)
t2 A

(2)
t2 , . . . , β

(2)
tlt

A
(2)
tlt
). (2.32)

Let us re-enumerate the indices of all sub-blocks into a sequence from r(1) to r(2):

{11, 12, . . . , 1l1}; {21, 22, . . . , 2l2}; · · · ; {r(1)1, r(1)2 . . . , r(1)lr(1)}

=⇒ {1, 2, . . . , l1; l1 + 1, l1 + 2, . . . , l1 + l2; . . . ;
r(1)−1∑
k=1

lk + 1, . . . , r(2)} (2.33)

so that

A
(2)
11 → A

(2)
1 ; A

(2)
12 → A

(2)
2 ; · · · ;A(2)

1l1
→ A

(2)
l1
; A

(2)
21 → A

(2)
l1+1; A

(2)
22 → A

(2)
l1+2 and so on.

Assemble (2.31) and (2.32) for all t = 1, 2, . . . , r(1) together and then use the re-index

(2.33), there is

C
(2)
1 = Q(2)TC

(1)
1 Q(2) = diag(A

(2)
1 , A

(2)
2 , . . . , A

(2)

r(2)
), (2.34)

C
(2)
3 = Q(2)TC

(1)
3 Q(2) = diag(β

(2)
1 A

(2)
1 , β

(2)
2 A

(2)
2 , . . . , β

(2)

r(2)
A

(2)

r(2)
). (2.35)

In other words, at the first iteration, C1 is congruent (via Q(1)) to a block diagonal ma-

trix C
(1)
1 of r(1) blocks as in (2.27), while at the second iteration, each of the r(1) blocks

is further decomposed (via Q(2)) into many more finer blocks (r(2) blocks) as in (2.34).

Simultaneously, the same congruence matric Q(1)Q(2) makes C3 into C
(2)
3 in (2.35),

which is a non-homogeneous dilation of C
(2)
1 with scaling factors {β(2)

1 , β
(2)
2 , . . . , β

(2)

r(2)
}.

As for C
(1)
2 in (2.28), after the first iteration it has already become a non-

homogeneous dilation of C
(1)
1 in (2.27) with scaling factors {β(1)

1 , β
(1)
2 , . . . , β

(1)

r(1)
}. Since

C
(1)
1 continues to split into finer sub-blocks as in (2.34), C

(1)
2 will be synchronously

decomposed, along with C
(1)
1 , into a block diagonal matrix of r(2) blocks having the

original scaling factors {β(1)
1 , β

(1)
2 , . . . , β

(1)

r(1)
}. Specifically, we can expand the scaling

factors {β(1)
1 , β

(1)
2 , . . . , β

(1)

r(1)
} to become a sequence of r(2) terms as follows:

{β(1)
1 , β

(1)
1 , . . . , β

(1)
1︸ ︷︷ ︸

l1

; β
(1)
2 , β

(1)
2 , . . . , β

(1)
2︸ ︷︷ ︸

l2

; · · · ; β(1)

r(1)
, β

(1)

r(1)
, . . . , β

(1)

r(1)︸ ︷︷ ︸
l
r(1)

} (2.36)

≜ {[β(1)
1 ], [β

(1)
2 ], . . . , [β

(1)
l1

]; [β
(1)
l1+1], . . . , [β

(1)
l1+l2

]; . . . ; [β
(1)∑r(1)−1

k=1 lk+1
], . . . , [β

(1)

r(2)
]}.
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With this notation, we can express

C
(2)
2 = Q(2)TC

(1)
2 Q(2) = diag([β

(1)
1 ]A

(2)
1 , [β

(1)
2 ]A

(2)
2 , . . . , [β

(1)

r(2)
]A

(1)

r(2)
). (2.37)

For C
(1)
4 up to C

(1)
m , let us take C

(1)
4 for example because all the others C

(1)
5 , C

(1)
6 ,

. . . , C
(1)
m can be analogously taken care of. By the assumption that C4C

−1
1 C3 is sym-

metric,we also have that

C
(1)
4 C

(1)
1

−1
C

(1)
3 = diag

(
C

(1)
41 A

(1)
1

−1
C

(1)
31 , . . . , C

(1)

4r(1)
A

(1)

r(1)

−1
C

(1)

3r(1)

)
(2.38)

is symmetric. Since, for each t = 1, 2, . . . , r(1), A
(1)
t

−1
C

(1)
3t is similarly diagonalizable by

Q
(2)
t ; and C

(1)
4t A

(1)
t

−1
C

(1)
3t is symmetric, by Lemma 2.2.2, C

(1)
4t can be further decomposed

into finer blocks to become

Q
(2)
t

T
C

(1)
4t Q

(2)
t = diag (C

(2)
4,t1, C

(2)
4,t2, . . . , C

(2)
4,tlt

)︸ ︷︷ ︸
sym.

. (2.39)

Under the re-indexing formula (2.33) and (2.36), we have

C
(2)
4 = Q(2)TC

(1)
4 Q(2) = diag(C

(2)
41 , C

(2)
42 , . . . , C

(2)

4r(2)
). (2.40)

Similarly, we have

C
(2)
j = Q(2)TC

(1)
j Q(2) = diag(C

(2)
j1 , C

(2)
j2 , . . . , C

(2)

jr(2)
); j = 5, 6, . . . ,m. (2.41)

As the process continues, at the third iteration we use the condition that C−1
1 C4

is diagonalizable and CjC
−1
1 C4, 5 ≤ j ≤ m symmetric to ensure the existence of a

congruence Q(3), which puts {C(2)
2 , C

(2)
3 , C

(2)
4 } as non-homogeneous dilation of the first

matrix C
(2)
1 , whereas from C

(2)
5 up to the last C

(2)
m are all block diagonal matrices with

the same pattern as the first matrix C
(2)
1 . At the final iteration, there is a congruence

matrix Q(m−1) that puts {C(m−1)
2 , C

(m−1)
3 , . . . , C

(m−1)
m } as non-homogeneous dilation of

C
(m−1)
1 . Define

R = Q(1)Q(2)Q(3) · · ·Q(m−1).

Then, the nonsingular congruence matrix R transforms the collection {RTCiR : i =

1, 2, . . . ,m} into block diagonal forms of (2.26). By Remark 2.2.1, the collection Cns =
{C1, C2, . . . , Cm}, m ≥ 3 is R-SDC and the proof is complete.

With (N1), (N2) and Theorem 2.2.1, we can now completely characterize the R-
SDC of a nonsingular collection Cns = {C1, C2, . . . , Cm}.

Theorem 2.2.2. Let Cns = {C1, C2, . . . , Cm} ⊂ Sn, m ≥ 3 be a nonsingular collection

with C1 invertible. The collection Cns is R-SDC if and only if for each 2 ≤ i ≤ m,

the matrix C−1
1 Ci is real similarly diagonalizable and CjC

−1
1 Ci, 2 ≤ i < j ≤ m are all

symmetric.
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2.2.2 Algorithm for the nonsingular collection

Return to (2.19), (2.20) and (2.21), in Lemma 2.2.2, where each Ci is decomposed

into block diagonal form. Let us call column t to be the family of submatrices {Cit|i =
3, 4, . . . ,m} of the tth block. If each Cit in the family satisfies

Cit = αi
tAt, for some αi

t ∈ R, i = 3, 4, . . . ,m, (2.42)

we say that (2.42) holds for column t. Since At are symmetric, there are orthogonal

matrices Ut such that (Ut)
TAtUt are diagonal. Therefore, if (2.42) holds for all columns

t, t = 1, 2, . . . , r, the given matrices C1, C2, . . . , Cm are R-SDC with the congruence

matrix P = Q · diag(U1, U2, . . . , Ur). Note that (2.42) always holds for column t with

mt = 1.

From the proof of Theorem 2.2.1, we indeed apply repeatedly Lemma 2.2.2 for

nonsingular pairs. That idea suggests us to propose an algorithm for finding R as

follows.

The procedure A below decompose the matrices into block diagonals.

Procedure A:

Step 1. Find a matrix R for C1, C2, . . . , Cm (by Lemma 2.2.2) such that

RTC1R =diag(C11, C12, . . . , C1r),

RTC2R =diag(α2
1C11, α

2
2C12, . . . , α

2
rC1r),

RTCiR =diag(Ci1, Ci2, . . . , Cir), 3 ≤ i ≤ m,

If (2.42) holds for all columns t, t = 1, 2, . . . , r, return R and stop. Else, set

j := 3 and go to Step 2.

Step 2. While j < m do

For t = 1 to r do

If (2.42) does not hold for column t, apply Lemma 2.2.2 for C1t, Cjt, . . . , Cmt

to find Qt :

(Qt)
TC1tQt =diag(C

(1)
1t , C

(2)
1t , . . . , C

(lt)
1t ),

(Qt)
TCjtQt =diag(α

j
t1C

(1)
1t , α

j
t2C

(2)
1t , . . . , α

j
tlt
C

(lt)
1t ),

(Qt)
TCitQt =diag(C

(1)
it , C

(2)
it , . . . , C

(lt)
it ), i = j + 1, . . . ,m.

Else set Qt := Imt and lt = 1, here mt ×mt is the size of C1t.
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EndFor

Update R := R · diag(Q1, . . . , Qr).

• Reset the number of blocks: r := l1 + l2 + . . .+ lr,

• Reset the blocks (use auxiliary variables if necessary)

C11 := C
(1)
11 , . . . , C1l1 := C

(l1)
11 , C1(l1+1) := C

(1)
12 , . . . , C1r := C

(lr)
1r ,

Ci1 := C
(1)
i1 , . . . , Cil1 := C

(l1)
i1 , Ci(l1+1) := C

(1)
i2 , . . . , Cir := C

(lr)
ir , i = j + 1, . . . ,m.

If (2.42) holds for all columns t, t = 1, 2, . . . , r, return R and Stop.

Else, j := j + 1.

EndWhile

To see how the algorithm works, we consider the following example where the matrices

given satisfy Theorem 2.2.1.

Example 2.2.1. We consider the following four 5× 5 real symmetric matrices:

C1 =


2 4 −6 −8 −14
4 10 −14 −20 −38
−6 −14 22 22 18

−8 −20 22 60 186

−14 −38 18 186 761

 , C2 =


5 10 −15 −20 −35
10 25 −35 −50 −95
−15 −35 55 55 45

−20 −50 55 150 465

−35 −95 45 465 1900



C3 =


−1 −2 3 4 7

−2 −5 7 10 19

3 7 −11 −11 −9
4 10 −11 −25 −73
7 19 −9 −73 −295

 , C4 =


1 2 −3 −4 −7
2 5 −7 −10 −19
−3 −7 17 −7 −93
−4 −10 −7 83 395

−7 −19 −93 395 2104

 .

Step 1. Apply Lemma 2.2.2 we have R =


0 0 0 1 2

0 0 1 0 2

0 1 0 0 5

1 0 0 0 −4
0 0 0 0 1

 such that

RTC1R :=


60 22 −20 −8 0

22 22 −14 −6 0

−20 −14 10 4 0

−8 −6 4 2 0

0 0 0 0 3

 := diag(C11, C12);
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RTC2R :=


150 55 −50 −20 0

55 55 −35 −15 0

−50 −35 25 10 0

−20 −15 10 5 0

0 0 0 0 5

 = diag

(
5

2
C11,

5

3
C12

)
,

where C11 :=


60 22 −20 −8
22 22 −14 −6
−20 −14 10 4

−8 −6 4 2

 ;C12 := (3);

RTC3R :=


−25 −11 10 4 0

−11 −11 7 3 0

10 7 −5 −2 0

4 3 −2 −1 0

0 0 0 0 4

 := diag(C31, C32),

where C31 :=


−25 −11 10 4

−11 −11 7 3

10 7 −5 −2
4 3 −2 −1

 , C32 := (4);

RTC4R :=


83 −7 −10 −4 0

−7 17 −7 −3 0

−10 −7 5 2 0

−4 −3 2 1 0

0 0 0 0 7

 := diag(C41, C42),

where C41 :=


83 −7 −10 −4
−7 17 −7 −3
−10 −7 5 2

−4 −3 2 1

 ;C42 := (7).

Observe that (2.42) does not hold for column 1 which involves the sub-matrices

C11, C31, C41, (note that at this iteration we have only two columns: r = 2) we set

j := 3 and go to Step 2.

Step 2. For t = 1 to 2 do

• t = 1 : (2.42) does not hold for column 1, we apply Lemma 2.2.2 for column 1
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including matrices C11, C31, C41 as follows. Find Q1 =


0 0 0 1

0 0 1 3

0 1 0 5

1 0 0 3

 such that

(Q1)
TC11Q1 =


2 4 −6 0

4 10 −14 0

−6 −14 22 0

0 0 0 2

 := diag(C
(1)
11 , C

(2)
11 )

(Q1)
TC31Q1 =


−1 −2 3 0

−2 −5 7 0

3 −7 −11 0

0 0 0 4

 := diag

(
−1

2
C

(1)
11 , 2C

(2)
11

)
,

where C
(1)
11 =

 2 4 −6
4 10 −14
−6 −14 22

 ;C
(2)
11 = (2);

(Q1)
TC41Q1 =


1 2 −3 0

2 5 −7 0

−3 −7 17 0

0 0 0 0

 := diag(C
(1)
41 , C

(2)
41 )

where C
(1)
41 =

 1 2 −3
2 5 −7
−3 −7 17

 ;C
(2)
41 := (0).

• t = 2 : (2.42) holds for column 2, set Q2 = 1, l2 = 1.

Update R := R · diag(Q1, Q2), here diag(Q1, Q2) =


0 0 0 1 0

0 0 1 3 0

0 1 0 5 0

1 0 0 3 0

0 0 0 0 1

 .

Reset the following:

The number of blocks: r = l1 + l2 = 2 + 1 = 3,

The blocks: Use auxiliary variables:

M11 :=C
(1)
11 ,M12 := C

(2)
11 ,M13 := C12;

M41 :=C
(1)
41 ,M42 := C

(2)
41 ,M43 := C42.
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Now, reset C1t := M1t, C4t := M4t, t = 1, 2, 3. We have

C11 =

 2 4 −6
4 10 −14
−6 −14 22

 , C12 = (2), C13 = (3)

and

C41 =

 1 2 −3
2 5 −7
−3 −7 17

 , C42 = (0), C43 = (7).

Observe that (2.42) does not hold for column 1. We set j := j+1 = 4 and repeat

Step 2.

For t = 1 to 3 do

• t = 1 : (2.42) does not hold for column 1. We apply Lemma 2.2.2 for C11, C41

as follows: Find Q1 =

1 1 0

1 0 1

1 0 0

 such that

(Q1)
TC11Q1 =

2 0 0

0 2 4

0 4 10

 = diag(C
(1)
11 , C

(2)
11 ,

(Q1)
TC41Q1 =

7 0 0

0 1 2

0 2 5

 := diag

(
7

2
C

(1)
11 ,

1

2
C

(2)
11

)

where C
(1)
11 = (2), C

(2)
11 =

(
2 4

4 10

)
.

• t = 2, 3 : (2.42) holds for columns 2, 3, we set Q2 = 1, Q3 = 1.

At this iteration we already have j = m, so we return R := R · diag(Q1, Q2, Q3)

=


1 1 0 3 2

1 0 1 5 2

1 0 0 3 5

0 0 0 1 −4
0 0 0 0 1

 . It is not difficult to check that R is the desired matrix:

RTC1R =diag(A1, A2, A3, A4),

RTC2R =diag

(
5

2
A1,

5

2
A2,

5

2
A3,

5

3
A4

)
,
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RTC3R =diag

(
−1

2
A1,−

1

2
A2, 2A3,

4

3
A4

)
,

RTC4R =diag

(
7

2
A1,

1

2
A2, 0A3,

7

3
A4

)
,

where A1 := (2);A2 :=

(
2 4

4 10

)
;A3 := (2);A4 := (3).

The algorithm for solving the SDC problem of a nonsingular collection Cns is now
stated as follows.

Algorithm 7 Solving the SDC problem for a nonsingular collection

INPUT: Real symmetric matrices C1, C2, . . . , Cm;C1 is nonsingular.

OUTPUT: NOT R-SDC or a nonsingular real matrix P that simultaneously diago-

nalizes C1, C2, . . . , Cm

Step 1. (Checking R-SDC)

If C−1
1 Ci is not real similarly diagonalizable for some i or CjC

−1
1 Ci is not sym-

metric for some i < j then NOT R-SDC and STOP.

Else, go to Step 2.

Step 2. � Apply Procedure A to find R, which satisfies (2.26);

� Let Ut, t = 1, 2, . . . , r, be orthogonal matrices such that UT
t AtUt are diagonal,

define U = diag(U1, U2, . . . , Ur).

Return P = RU.

Example 2.2.2. We consider again the three matrices given in Example 2.1.6. Recall

that Algorithm 6 requires three steps: (1) finding X; (2) computing the square root

Q of X : Q2 = X; and (3) applying Algorithm 5 to the matrices QC1Q,QC2Q,QC3Q

to obtain a unitary matrix V and returning the congruence matrix P = QV. Here,

Algorithm 7 requires only one step as follows. The matrix C−1
1 C2 =

 0 1 −1
0 −1 0

0 −1 −1
2


is real similarly diagonalizable by P =

 2 1 1

0 1 0

1 2 0

 . Since C−1
1 C2 has three distinct

eigenvalues, which are 0,−1,−1
2
, the matrices C1, C2, C3 are R-SDC via congruence P.
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2.2.3 The SDC problem of singular collection

Let Cs = {C1, C2, . . . , Cm} ⊂ Sn be a singular collection in which every Ci ̸= 0

is singular. Consider the first two matrices C1, C2. If they are not R-SDC so is not Cs.
Otherwise, by Lemmas 1.2.8, Theorem 1.2.1 and Lemma 1.2.9, there is a nonsingular

U1 that converts C1, C2 to block diagonal matrices

C̃1 = diag( (C11)p︸ ︷︷ ︸
invert. & diag.

, 0n−p); C̃2 = diag((C21)p, (C26)s1︸ ︷︷ ︸
invert. & diag.

, 0n−p−s1) (2.43)

where C11 and C26 are both nonsingular diagonal, p > 0, s1 ≥ 0; and 0n−p denotes the

zero matrix of size (n− p)× (n− p). We emphasize that s1 = 0 corresponds to (1.11)

in Lemma 1.2.8, while s1 > 0 to (1.12) in Lemma 1.2.8. Also by Theorem 1.2.1 and

Lemma 1.2.9, the R-SDC of {C1, C2} implies the R-SDC of {(C11)p, (C21)p}, the latter
of which is a nonsingular collection of smaller matrix size p < n.

Suppose {C11, C21} are R-SDC, say, by (W )p. Let Q1 = diag((W )p, In−p), where

In−p is the identity matrix of dimension n− p. Then,

C̃ ′
1 = QT

1 C̃1Q1 = diag( (W TC11W )p︸ ︷︷ ︸
≜C̃′

11: invert. & diag.

, 0s1︸︷︷︸
s1≥0︸ ︷︷ ︸

≜Ĉ11

, 0n−p−s1);

C̃ ′
2 = QT

1 C̃2Q1 = diag((W TC21W )p︸ ︷︷ ︸
≜C̃′

21: diag.

, (C26)s1︸ ︷︷ ︸
≜C̃′

26:invert.& diag.

, 0n−p−s1).

It allows us to choose a large enough µ1 such that µ1C̃
′
11 + C̃ ′

21 is invertible (where

C̃ ′
21 = W TC21W ). Then,

µ1C̃
′
1 + C̃ ′

2 = QT
1 (µ1C̃1 + C̃2)Q1

= diag((µ1C̃
′
11 + C̃ ′

21)p︸ ︷︷ ︸
invert. & diag.

, (C̃ ′
26)s1︸ ︷︷ ︸

invert. & diag.︸ ︷︷ ︸
≜Ĉ21:invert. & diag.

, 0n−p−s1).

Now include C3 for determining the R-SDC of {C1, C2, C3}. We first transform C3

by U1, followed by Q1, to obtain C̃ ′
3 = QT

1 (U
T
1 C3U1)Q1. The idea is to apply Lemma

1.2.8 again to convert µ1C̃
′
1 + C̃ ′

2 and C̃ ′
3 into the form (2.43), where, with the help

of a sufficiently large µ1 > 0, the subblock (Ĉ21)p+s1 in µ1C̃
′
1 + C̃ ′

2 is nonsingular and

diagonal and thus can be used to determine the R-SDC of {µ1C̃
′
1+ C̃ ′

2, C̃
′
3}. The entire

Section is devoted to proving that the idea does indeed work. The main result, Theorem

2.2.3, states that, suppose that the first m−1 matrices are R-SDC (otherwise, it is end

of the story), there always exist a sequence of congruences matrices and a sequence of
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large enough constants which can reduce the R-SDC of the entire singular collection

Cs to become the R-SDC of another nonsingular collection Cns having a smaller matrix

size.

Suppose C1, C2 are R-SDC and we now include C3 to determine the R-SDC of

{C1, C2, C3}. By Theorem 1.2.1 and Lemma 1.2.9, there is a U1 that converts C1, C2 to

block diagonal matrices C̃1 = diag((C11)p, 0n−p) and C̃2 = diag((C21)p, (C26)s1 , 0n−p−s1)

where C11 and C26 are both nonsingular diagonal, but s1 ≥ 0 could be 0. Moreover,

R-SDC of C1, C2 implies that C11, C21 are R-SDC, say, by the congruence (W )p. Let

Q1 = diag((W )p, In−p). Then,

C̃ ′
1 = QT

1 C̃1Q1 = diag( (W TC11W )p︸ ︷︷ ︸
≜C̃′

11: invert. & diag.

, 0s1︸︷︷︸
s1≥0︸ ︷︷ ︸

≜Ĉ11

, 0n−p−s1); (2.44)

C̃ ′
2 = QT

1 C̃2Q1 = diag((W TC21W )p︸ ︷︷ ︸
≜C̃′

21: diag.

, (C26)s1︸ ︷︷ ︸
≜C̃′

26:invert.& diag.

, 0n−p−s1). (2.45)

Synchronically, C3 is first transformed to C̃3 by U1, followed by another transformation

by Q1 to become

C̃ ′
3 = QT

1 UT
1 C3U1︸ ︷︷ ︸
C̃3

Q1 =


(M31)p+s1︸ ︷︷ ︸
sym., s1≥0

M32

MT
32 (M33)n−p−s1︸ ︷︷ ︸

sym.

 (2.46)

Note that, in (2.44), C̃ ′
11 = W TC11W is invertible due to C11 being invertible and

rank(C11) = rank(C̃ ′
11). It allows us to choose a large enough µ1 such that µ1C̃

′
11 + C̃ ′

21

is invertible (where C̃ ′
21 = W TC21W ). Then,

µ1C̃
′
1 + C̃ ′

2 = QT
1 (µ1C̃1 + C̃2)Q1

= diag((µC̃ ′
11 + C̃ ′

21)p︸ ︷︷ ︸
invert. & diag.

, (C̃ ′
26)s1︸ ︷︷ ︸

invert. & diag.︸ ︷︷ ︸
≜Ĉ21:invert. & diag.

, 0n−p−s1). (2.47)

Next, we are going to convert the pair µ1C̃
′
1 + C̃ ′

2 and C̃ ′
3 into the form (1.10)

and (1.11); or the form of (1.10) and (1.12) in Lemma 1.2.8, respectively. Notice that

µ1C̃
′
1 + C̃ ′

2 = diag((Ĉ21)p+s1 , 0n−p−s1) is already in the form of (1.10).

• If, in (2.46), M33 = 0, C̃ ′
3 is thus in the form of (1.11). Let us rename

Ĉ1 = C̃ ′
1 (in (2.44)); Ĉ2 = µ1C̃

′
1 + C̃ ′

2 (in (2.47)); Ĉ3 = C̃ ′
3 =

(
M31 M32

MT
32 0

)
(2.48)
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and denote their north-west subblocks as in (2.44) and in (2.47)

Ĉ11 = diag((C̃ ′
11)p, 0s1); Ĉ21 = diag((µC̃ ′

11 + C̃ ′
21)p, (C̃

′
26)s1︸ ︷︷ ︸

invert. & diag.

); Ĉ31 = (M31)p+s1 . (2.49)

It is easy to see the following result.

Lemma 2.2.3. Let {Ĉ1, Ĉ2, Ĉ3} be singular matrices of the form (2.48). Then, {Ĉ1, Ĉ2,

Ĉ3} are R-SDC if and only if the north-western sub-blocks of them,{Ĉ11, Ĉ21, Ĉ31}, as
specified by (2.49) are R-SDC; and M32 = 0.

Proof. If M32 = 0 and the northwest sub-blocks Ĉ11, Ĉ21, Ĉ31 in (2.49) are R-SDC by

(L1)p+s1 , then the matrix L = diag(L1, In−p−s1) simultaneously diagonalizes Ĉ1, Ĉ2, Ĉ3

via congruence.

Conversely, suppose Ĉ1, Ĉ2, Ĉ3 are R-SDC. In particular, Ĉ2, Ĉ3 are R-SDC. Since
Ĉ21 is nonsingular and diagonal whereas Ĉ3 is in the form of (1.11), by Theorem 1.2.1,

M32 must be 0. It implies that Ĉ1, Ĉ2, Ĉ3 have the same block structure. Specifically,

Ĉ1 = diag((Ĉ11)p+s1 , 0), Ĉ2 = diag((Ĉ21)p+s1 , 0), and Ĉ3 = diag((M31)p+s1 , 0). By

Lemma 1.1.6, {Ĉ11, Ĉ21, Ĉ31} are R-SDC and the proof is complete.

• Suppose, in (2.46), M33 ̸= 0. Let an orthogonal (P2)n−p−s1 be such that

P T
2 M33P2 = diag( (C36)s2︸ ︷︷ ︸

invert. & diag., s2>0

, 0n−p−s1−s2),

with which we can form H2 = diag(Ip+s1 , P2) and compute

HT
2 C̃

′
3H2 =

(M31)p+s1 C34 C35

CT
34 (C36)s2 0

CT
35 0 0n−p−s1−s2

 , (2.50)

where (C34, C35)p×(n−p) = M32P2. Define further that

V2 =

 Ip+s1 0 0

−C−1
36 C

T
34 Is2 0

0 0 In−p−s1−s2

 , and U2 = H2V2 (2.51)

so that

C̆3 ≜ UT
2 C̃

′
3U2 =


M31 − C34C

−1
36 C

T
34︸ ︷︷ ︸

≜(C̆31)p+s1 , sym.

0 C35

0 (C36)s2︸ ︷︷ ︸
invert. & diag.

0

CT
35 0 0n−p−s1−s2

 . (2.52)
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More importantly, the transformation U2,

U2 = H2V2 =

 Ip+s1 0

−P2

[
C−1

36 C
T
34

0

]
(P2)n−p−s1

 , (2.53)

does not change C̃ ′
1 in (2.44) and µ1C̃

′
1 + C̃ ′

2 in (2.47), in the sense that

C̆1 ≜ UT
2 C̃

′
1U2 = C̃ ′

1 = diag((W TC11W )p, 0s1︸ ︷︷ ︸
≜C̆11=Ĉ11: diagonal

, 0n−p−s1) (2.54)

C̆2 = UT
2 (µ1C̃

′
1 + C̃ ′

2)U2 = µ1C̃
′
1 + C̃ ′

2

= diag((µ1C̃
′
11 + C̃ ′

21)p, (C̃
′
26)s1︸ ︷︷ ︸

≜C̆21=Ĉ21: invert. & diag.

, 0n−p−s1). (2.55)

Notice that, in (2.54) and (2.55), Ĉ11 is renamed as C̆11, while Ĉ21 becomes C̆21. Then,

we have the following main result.

Lemma 2.2.4. The singular collection {C̆1, C̆2, C̆3} in (2.54), (2.55), in (2.52) are

R-SDC if and only if the north-western sub-blocks of them, i.e. {C̆11, C̆21, C̆31}, are
R-SDC; and C35 in (2.52) is a zero matrix or does not exist.

Proof. The sufficiency of Lemma 2.2.4 is easy. If C35 in (2.52) is a zero matrix or

does not exist, and if the northwest sub-blocks C̆11, C̆21, C̆31 in (2.54), (2.55) and (2.52)

are R-SDC by (L1)p+s1 , then the matrix L = diag(L1, Is2 , In−p−p2−s2) simultaneously

diagonalizes {C̆1, C̆2, C̆3} via congruence.

To prove the necessity, suppose that C̆1, C̆2, C̆3 are R-SDC by a congruence matrix

Q. In particular, C̆2, C̆3 are R-SDC in which

C̆21 = diag((µC̃ ′
11 + C̃ ′

21)p, (C̃
′
26)s1︸ ︷︷ ︸

invert. & diag.

) (in C̆2), (C36)s2︸ ︷︷ ︸
invert. & diag.

(in C̆3)

are nonsingular diagonal. By Lemma 1.2.9, two matrices (here they are C̆2, C̆3) in the

form of (1.10) and (1.12) are R-SDC, there must be C35 = 0 in C̆3 (2.52) or C35 does

not exist. Let us assume that C35 = 0. Then,

C̆2 = diag( (C̆21)p+s1︸ ︷︷ ︸
invert. & diag.

, 0s2 , 0n−p−s1−s2)

C̆3 = diag((C̆31)p+s1 , (C36)s2︸ ︷︷ ︸
invert. & diag.

, 0n−p−s1−s2)
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where C̆31 = M31 − C34C
−1
36 C

T
34 has been defined in (2.52).

By Lemma 1.1.6, two matrices (which are C̆2, C̆3 with p = p + s1 + s2,) of form

(1.1) are R-SDC, the congruence Q that diagonalizes C̆2, C̆3 can be chosen to be

Q =

 (Q1)p+s1 (Q2)(p+s1)×s2 0

(Q3)s2×(p+s1) (Q4)s2 0

0 0 In−p−s1−s2

 (2.56)

such that the first p + s1 diagonal entries of the diagonal matrix QT C̆2Q are all

non-zero. We shall show that Q2 = 0(p+s1)×s2 and Q3 = 0s2×(p+s1) so that Q =

diag ((Q1)p+s1 , (Q4)s2 , In−p−s1−s2) .

By Q in (2.56), C̆2 is congruent to the diagonal matrix

QT C̆2Q =

(QT
1 C̆21Q1)p+s1 QT

1 C̆21Q2 0

QT
2 C̆21Q1 (QT

2 C̆21Q2)s2 0

0 0 0n−p−s1−s2


in which QT

1 C̆21Q1 is nonsingular diagonal. Since C̆21 is also nonsingular, it implies

that Q1 must be nonsingular. Then, due to the off-diagonal block QT
1 Ĉ21Q2 = 0, we

see that Q2 = 0. Then,

QT C̆2Q = diag((QT
1 C̆21Q1)p+s1︸ ︷︷ ︸

invert. & diag.

, 0s2 , 0n−p−s1−s2). (2.57)

Since C̆1 in (2.54) and C̆2 in (2.55) adopt the same block structure, there also is

QT C̆1Q = diag((QT
1 C̆11Q1)p+s1︸ ︷︷ ︸

diag.

, 0s2 , 0n−p−s1−s2). (2.58)

The same congruence Q also diagonalizes Ĉ3. Since Q2 = 0 in (2.56),

QT C̆3Q =

QT
1 C̆31Q1 +QT

3C36Q3 QT
3C36Q4 0

QT
4C36Q3 QT

4C36Q4 0

0 0 0

 is diagonal (2.59)

so thatQT
4C36Q3 = 0. From (2.56), sinceQ is nonsingular and we have known thatQ2 =

0, there must be Q4 nonsingular. From (2.52), we also know that C36 is nonsingular.

Then, QT
4C36Q3 = 0 implies that Q3 = 0, which proves that the congruence Q =

diag ((Q1)p+s1 , (Q4)s2 , In−p−s1−s2) and (2.63) becomes

QT C̆3Q = diag((QT
1 C̆31Q1)p+s1︸ ︷︷ ︸

diag.

, (QT
4C36Q4)s2︸ ︷︷ ︸

diag.

, 0n−p−s1−s2). (2.60)
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Combining (2.58),(2.57),(2.60), we see that if C̆1, C̆2, C̆3 are R-SDC by Q, then the

north-western blocks C̆11, C̆21, C̆31 are R-SDC by Q1. The proof is complete.

In summary, when C1 and C2 are R-SDC, there is

C̆1 = UT
2

=C̃′
1 in (2.44)︷ ︸︸ ︷

QT
1 UT

1 (C1)U1︸ ︷︷ ︸
=C̃1in Lemma 1.2.8

Q1 U2

where U1 is from Lemma 1.2.8 that puts C1, C2 in the form of C̃1 = UT
1 C1U1 (1.10) and

C̃2 = UT
1 C2U1 (1.12); while Q1 from (2.44)-(2.45) diagonalizes simultaneously C̃1 and

C̃2; finally U2 from (2.53) puts C̃ ′
3 = QT

1U
T
1 C3U1Q1 in the form of (2.52). In addition,

C̆2 = UT
2 Q

T
1U

T
1 (µC1 + C2)U1Q1U2; C̆3 = UT

2 Q
T
1U

T
1 (C3)U1Q1U2.

It is obvious that C̆1, C̆2, C̆3 are R-SDC if and only if C1, µC1 + C2, C3 are R-SDC;
and, if and only if C1, C2, C3 are R-SDC. Therefore, from Lemma 2.2.4, we have the

following result.

Lemma 2.2.5. Let {C1, C2, C3} ⊂ Sn be a singular collection and assume that C1, C2

are R-SDC. Then, there is a nonsingular U and a constant µ such that C̆1 = UTC1U,

C̆2 = UT (µC1 + C2)U, C̆3 = UTC3U be singular matrices of the forms (2.54), (2.55)

and (2.52), respectively. Moreover, the collection {C1, C2, C3} is R-SDC if and only if

the northwestern nonsingular subblocks of them, {C̆11, C̆21, C̆31}, are R-SDC; and C35

in (2.52) is either zero or does not exist.

Lemmas 2.2.3 and 2.2.5 can be easily extended to more than three matrices.

Theorem 2.2.3 below can be proved by induction. Firstly, we need the following lemma.

Lemma 2.2.6. Suppose C̃1, C̃2, . . . , C̃m are singular matrices of the forms:

for i = 1, 2, . . . ,m− 1,

C̃i = diag((Ci1)p, 0s, 0r−s) = diag((Ĉi1)p+s, 0r−s) (2.61)

for i = m,

C̃m = diag((Cm1)p, (Cm6)s, 0r−s) = diag((Ĉm1)p+s, 0r−s) (2.62)

where p, r ≥ 1, s ≥ 0; in (2.61), Ci1, i = 1, 2, . . . ,m− 1, are real diagonal of size p× p,

(Ĉi1)p+s = diag((Ci1)p, 0s), and C(m−1)1 is nonsingular; (Ĉm1)p+s = diag((Cm1)p, (Cm6)s)

in (2.62), Cm1 is real symmetric of size p× p, Cm6 is real nonsingular diagonal of size

s × s. Then C̃1, C̃2, . . . , C̃m−1, C̃m are R-SDC if and only if their north-west blocks

C11, C21, . . . , C(m−1)1, Cm1 are R-SDC.
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Proof. Suppose first that C11, C21, . . . , Cm1 are R-SDC by Q1. We define the matrix Q

as follows: if r > s then Q = diag(Q1, Is, Ir−s); if r = s then Q = diag(Q1, Is). Then

C̃1, C̃2, . . . , C̃m are R-SDC by Q.

For the converse, suppose that C̃1, C̃2, . . . , C̃m are R-SDC and r > s. The case

r = s is proved similarly. By Lemma 1.1.6, (Ĉ11)p+s, (Ĉ(m−1)1)p+s, . . . , (Ĉm1)p+s are

R-SDC by

Q =

(
Q1 Q2

Q3 Q4

)
,

where Q1 and Q4 are square matrices of size p×p and s×s, respectively, such that the

p nonzero elements of the diagonal matrix QT Ĉ(m−1)1Q are put in the first p positions

of the diagonal. Specifically for Ĉ(m−1)1, it is congruent to the diagonal matrix

QT Ĉ(m−1)1Q =

(
QT

1C(m−1)1Q1 QT
1C(m−1)1Q2

QT
2C(m−1)1Q1 QT

2C(m−1)1Q2

)

with QT
1C(m−1)1Q1 being nonsingular diagonal of p × p, QT

2C(m−1)1Q2 being diagonal

and QT
1C(m−1)1Q2 = 0. Since both C(m−1)1 and QT

1C(m−1)1Q1 are nonsingular, the

submatrix Q1 must be nonsingular. The equation QT
1C(m−1)1Q2 = 0 thus implies that

Q2 = 0. Then we have

QT Ĉ(m−1)1Q =

(
QT

1C(m−1)1Q1 0

0 0

)
and

QT Ĉi1Q =

(
QT

1Ci1Q1 0

0 0

)
, i = 1, 2, . . . ,m− 2,

such that QT
1Ci1Q1, i = 1, 2, . . . ,m− 1, are all diagonal.

Finally, for i = m,

QT Ĉm1Q =

(
QT

1Cm1Q1 +QT
3Cm6Q3 QT

3Cm6Q4

QT
4Cm6Q3 QT

4Cm6Q4

)
(2.63)

is diagonal. Then, QT
1Cm1Q1+QT

3Cm6Q3 and QT
4Cm6Q4 are diagonal and QT

4Cm6Q3 =

0. We note that Q is nonsingular and Q2 = 0, the matrix Q4 must be nonsingular.

Moreover, by assumption, Cm6 is nonsingular so that QT
4Cm6Q3 = 0 implies that

Q3 = 0. As a consequence, Ĉm1 is reduced to

QT Ĉm1Q =

(
QT

1Cm1Q1 0

0 QT
4Cm6Q4

)
,

so that QT
1Cm1Q1 is diagonal.

69



Those arguments have shown that C11, C21, . . . , C(m−1)1, Cm1 are R-SDC by the

nonsingular matrix Q1.

Theorem 2.2.3. Let Cs = {C1, C2, . . . , Cm} ⊂ Sn, m ≥ 3 be a singular collection in

which none is zero. If C1, C2, . . . , Cm−1 are R-SDC, then there exist a nonsingular real

matrix Q and a positive vector µ = (µ1, µ2, . . . , µm−2, 1) ∈ Rm−1
++ such that

C̃1 = QTC1Q = diag((C11)p, 0n−p), p < n;

C̃2 = QT (µ1C1 + C2)Q = diag((C21)p, 0n−p);

C̃3 = QT (µ2(µ1C1 + C2) + C3)Q = diag((C31)p, 0n−p);
...

C̃m−1 = QT (µm−2(· · ·µ3(µ2(µ1C1 + C2) + C3) + C4) + · · ·+ Cm−2) + Cm−1)Q

= diag((C(m−1)1)p, 0n−p); (2.64)

and either

C̃m = QTCmQ =

(
(Cm1)p Cm2

CT
m2 0n−p

)
; (2.65)

or

C̃m = QTCmQ =

(Cm1)p 0 Cm5

0 (Cm6)s 0

CT
m5 0 0n−p−s

 , s ≤ n− p, (2.66)

where

� the sub-matrices (Ci1)p, i = 1, 2, . . . ,m− 1, are all diagonal of the same size. In

particular, (C(m−1)1)p in (2.64) is nonsingular;

� in (2.65), (Cm1)p is symmetric;

� in (2.66), (Cm1)p is symmetric, (Cm6)s is nonsingular diagonal; Cm5 is either a

p× (n− p− s) matrix if s < n− p or does not exist if s = n− p.

Moreover, the following three statements are equivalent.

(i) all matrices in the collection Cs are R-SDC;

(ii) all matrices in the collection C̃s = {C̃1, C̃2, . . . , C̃m} are R-SDC;

(iii) either sub-blocks C11, C21, . . . , Cm1 with Cm1 coming from (2.65) are R-SDC and

Cm2 = 0; or sub-blocks C11, C21, . . . , Cm1 with Cm1 coming from (2.66) are R-SDC
and either Cm5 = 0 or Cm5 does not exist.

70



Proof. Proof for the initial step of mathematical induction:

1. Suppose C1 and C2 are R-SDC. By Lemma 2.2.5, the theorem is true form = 3.

2. Proof for the induction step on m ≥ 4 : Suppose (2.64) and (2.65) or (2.64) and

(2.66) hold for m− 1 matrices C1, C2, . . . , Cm−1, i.e., there exist a nonsingular matrix

Q1 and a vector µ̂ = (µ1, µ2, . . . , µm−3, 1) ∈ Rm−2
++ such that

Ĉ1 =QT
1C1Q1 = diag((Ĉ11)p1 , 0r1),

Ĉ2 =QT
1 (µ1C1 + C2)Q1 = diag((Ĉ21)p1 , 0r1),

...

Ĉm−2 =QT
1 (µm−3(. . . µ2(µ1C1 + C2) + C3) + . . .+ Cm−2)Q1

=diag((Ĉ(m−2)1)p1 , 0r1), (2.67)

and either

Ĉm−1 = QT
1Cm−1Q1 =

(
(Ĉ(m−1)1)p1 Ĉ(m−1)2

ĈT
(m−1)2 0n−p1

)
; (2.68)

or

Ĉm−1 = QT
1Cm−1Q1 =

(Ĉ(m−1)1)p1 0p1×s1 Ĉ(m−1)5

0s1×p1 Ĉ(m−1)6 0s1×(r1−s1)

(Ĉ(m−1)5)
T 0(r1−s1)×s1 0r1−s1

 , (2.69)

where

� the sub-matrices (Ĉi1)p1 , i = 1, 2, . . . ,m− 2, are all diagonal of the same size. In

particular, (Ĉ(m−2)1)p1 is nonsingular;

� in (2.68), (Ĉ(m−1)1)p1 is symmetric; (Ĉ(m−1)2) is a p1 × (n− p1).

� in (2.69), (Ĉ(m−1)1)p1 is symmetric, (Ĉ(m−1)6)s is nonsingular diagonal; Ĉ(m−1)5 is

either a p1 × (n− p1 − s) matrix if s < n− p1 or does not exist if s = n− p1.

Since C1, C2, . . . , Cm−1 are R-SDC, the collection Ĉ1, Ĉ2, . . . , Ĉm−1 are R-SDC.
This implies that Ĉm−2, Ĉm−1 are R-SDC.

• If Ĉm−1 takes the form (2.68), Ĉ(m−1)2 = 0 (by Lemma 1.2.1). Then, the

matrices Ĉ1, Ĉ2, . . . , Ĉm−1 have the form of (1.1). By Lemma 1.1.6, the submatrices

Ĉ11, Ĉ21, . . . , Ĉ(m−1)1 are R-SDC.

• If Ĉm−1 takes the form (2.69), Ĉ(m−1)5 is zero or does not exist (by Lemma 1.2.9).

Then, the matrices Ĉ1, Ĉ2, . . . , Ĉm−1 have the form of (2.61), (2.62). By Lemma 2.2.6,

the submatrices Ĉ11, Ĉ21, . . . , Ĉ(m−1)1 are R-SDC.
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Therefore, there is a nonsingular matrix P1 such that

P T
1 Ĉi1P1 = C̃i1, i = 1, 2, . . . ,m− 1

are all diagonal. Set Q2 =

(
P1 0

0 Ir1

)
and Q3 = Q1Q2, then from (2.67),

C̃1 =QT
3C1Q3 = QT

2 Ĉ1Q2 = diag(C̃11, 0r1),

C̃2 =QT
3 (µ1C1 + C2)Q3 = QT

2 Ĉ2Q2 = diag(C̃21, 0r1),

. . .

C̃m−2 =QT
3 (µm−3(. . . µ3(µ2(µ1C1 + C2) + C3) + C4) + . . .+ Cm−3) + Cm−2)Q3

=QT
2 Ĉm−2Q2 = diag(C̃(m−2)1, 0r1)

C̃m−1 =QT
3Cm−1Q3 = QT

2 Ĉm−1Q2 = diag(C̃(m−1)1, (Ĉ(m−1)6)s1 , 0r1−s1), s1 ≥ 0,

where all C̃i1 are diagonal, i = 1, 2, . . . ,m−1; C̃(m−2)1, Ĉ(m−1)6 are nonsingular diagonal.

Notice that if s1 = 0 then Ĉ(m−1)6 does not exist.

Suppose

C̃(m−2)1 = diag(η1, η2, . . . , ηp1) and C̃(m−1)1 = diag(γ1, γ2, . . . , γp1)

where ηj ̸= 0, j = 1, 2, . . . , p1. We now define

µm−2 = max
1≤j≤p1

{∣∣∣∣γjηj
∣∣∣∣+ 1

}
.

Then, the matrix

µm−2C̃(m−2)1 + C̃(m−1)1 = diag(µm−2η1 + γ1, . . . , µm−2ηp1 + γp1)

is nonsingular diagonal of size p1 × p1. Let r2 = r1 − s1, p2 = p1 + s1 and

Ci1 =diag(C̃i1, 0s1), i = 1, 2, . . . ,m− 2,

C(m−1)1 =diag(µm−2C̃(m−2)1 + C̃(m−1)1, Ĉ(m−1)6)

we will have

C̃i = diag((Ci1)p2 , 0r2), i = 1, 2, . . . ,m− 1,

such that C(m−1)1 is nonsingular diagonal and µ = (µ1, . . . , µm−2, 1) ∈ Rm−1
++ .

Now for QT
3CmQ3 we make a partition as

Ĉm = QT
3CmQ3 =

(
Nm1 Nm2

Nm3 Nm4

)
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such that Nm1 and Nm4 are symmetric matrices of size p2×p2 and r2×r2, respectively.

Using the same arguments as in (2.48), (2.52), there will be nonsingular matrices U

such that Q = Q3U satisfying C̃i = QT C̃iQ for all i = 1, 2, . . . ,m−1 and C̃m = QT ĈmQ

is of the form (2.65) or (2.66). Then the matrix Q will be the one we need to find and

µ = (µ1, . . . , µm−2, 1) ∈ Rm−1
++ .

Moreover, we have:

(i) ⇔ (ii). If all matrices in the collection Cs are R-SDC by P, then all matrices

in the collection C̃s = {C̃1, C̃2, . . . , C̃m} are R-SDC by Q−1P ;

Conversely, if C̃1, C̃2, . . . , C̃m are R-SDC by R, then C1, C2, . . . , Cm are R-SDC
by QR.

(ii) ⇔ (iii) If C̃1, C̃2, . . . , C̃m are R-SDC, C̃m−1, C̃m are R-SDC. By Lemma

1.2.1, Cm2 = 0 if C̃m is in the form of (2.65). Then, by Lemma 1.1.6, sub-blocks

C11, C21, . . . , Cm1 are R-SDC. And by Lemma 1.2.9, Cm5 = 0 or does not exist if C̃m is

in the form of (2.66). Then, by Lemma 2.2.6, sub-blocks C11, C21, . . . , Cm1 are R-SDC.

Conversely, if sub-blocks C11, C21, . . . , Cm1 with Cm1 coming from (2.65) are R-
SDC and Cm2 = 0, then C̃1, C̃2, . . . , C̃m are R-SDC (since Lemma 1.1.6). Or, if sub-

blocks C11, C21, . . . , Cm1 with Cm1 coming from (2.66) are R-SDC and either Cm5 = 0

or Cm5 does not exist, then C̃1, C̃2, . . . , C̃m are R-SDC (by Lemma 2.2.6).

2.2.4 Algorithm for the singular collection

The following algorithm helps to solve the SDC problem of a singular collection.
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Algorithm 8 Solving the SDC problem for a singular collection.

INPUT: A singular collection of real symmetric matrices C1, C2, . . . , Cm

OUTPUT: NOT R-SDC or a nonsingular real matrix Q that simultaneously diago-

nalizes C1, C2, . . . , Cm

Step 1. Find a matrix Q such that QTC1Q = diag(α1, α2, . . . , αp, 0r) :=

diag(C11, 0r), αi ̸= 0.

Step 2. For i = 2 to m do

Using Lemma 1.2.8 to find Qi such that

QT
i Q

TCiQQi =

(
(Ci1)p (Ci2)p×(n−p)

CT
i2 0n−p

)
.

or

QT
i Q

TCiQQi =

 Ci1 0p×s Ci5

0s×p Ci6 0s×(r−s)

(Ci5)
T 0(r−s)×s 0r−s

 .

If Ci2 ̸= 0, or Ci5 ̸= 0 then NOT R-SDC and STOP.

Else, apply Algorithm 7 for C11, . . . , Ci1.

If C11, . . . , Ci1 are not R-SDC then C1, C2, . . . , Cm are NOT R-SDC and

STOP,

Else let Pi be the matrix returned when applying Algorithm 7 for

C11, . . . , Ci1, set Mi := diag(Pi, Ir), Q := QQiMi.

If i = m then Stop. Else compute

QTCiQ := diag(β1, β2, . . . , βp, βp+1, . . . , βp+s, 0r−s),

µ = max1≤j≤p

{∣∣∣∣βj

αj

∣∣∣∣+ 1

}
.

Set α1 := µα1 + β1, . . . , αp := µαp + βp, αp+1 := βp+1, . . . , αp+s := βp+s

p := p+ s; r := n− p,

EndIf

EndIf

EndFor

Return Q.
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To end the section we consider the following simple example to see how the

algorithm works. We suppose the first two matrices were diagonalized by Lemma 1.2.9

[37, Theorem 6].

Example 2.2.3. We consider the following singular collection of three matrices

C1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , C2 =


0 0 0 0

0 1 0 0

0 0 1
4

0

0 0 0 0

 , C3 =


5 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

 .

Step 1. Since C1 are already diagonal: C1 = diag(1, 03) = diag(C11, 03), so

Q := I.

Step 2. For i = 2 to 3 do

• i = 2 : find Q2 = I such that QT
2Q

TC2QQ2 = diag(0, 1, 1
4
, 0) = (C21, C26, 01),

C21 = diag(0), C26 = diag(1, 1
4
).

Since C11, C21 are already diagonal, let P2 := I1,M2 := diag(I1, I3), update

Q := QQ2M2 = I.

We find µ = 1 then α1 = 1, α2 = 1, α3 =
1
4
; p = 1 + 2 = 3, r = n− p = 4− 3 = 1.

• i = 3 : Applying Lemma 1.2.8 to find Q3 as follows: we have Ĉ3 = QTC3Q = C3 =(
M31 M32

(M32)
T M33

)
, here M31 =

5 0 0

0 1 1

0 1 1

 ,M32 =

1

0

0

 and M33 = (1). Let Q3 =

(
I3 0

−(M33)
−1(M32)

T 1

)
=


1 0 0 0

0 1 0 0

0 0 1 0

−1 0 0 1

 we have C̃3 = QT
3 Ĉ3Q3 = QT

3Q
TC3QQ3 =


4 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

 , then C31 =

4 0 0

0 1 1

0 1 1

 , C36 = (1), C35 does not exist. Apply Algo-

rithm 7 for C11, C21, C31 we find P3 =

1 0 0

0 1 1

0 −1 4

 . Set H3 = diag(P3, I1) and update

Q = QQ3H3 =


1 0 0 0

0 1 1 0

0 −1 4 0

−1 0 0 1

 . We can check that C1, C2, C3 are R-SDC by Q.
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Conclusion of Chapter 2

In the first part of this chapter we presented two different methods for solving

the SDC problem of Hermitian matrices, which are the max-rank method shown in

Theorem 2.1.4 and the Algorithm 4, and the SDP method, please see Theorem 2.1.5

and the Algorithm 6. In the second part of the chapter, we proposed a contructive

and inductive algorithm for solving the SDC problem of the real symmetric matrices,

which are Theorems 2.2.2, 2.2.3 and the Algorithms 7, 8. We also presented numerical

experiments to show the efficiency of the algorithms.
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Chapter 3

Some applications of the SDC

results

In this chaper we show how the SDC of matrices can help to solve some problems.

In Section 3.1, we show that the SDC of two real symmetric matrices can help to

completely evaluate the positive semidefinite interval of matrix pencil. In Section 3.2

we use the SDC of matrices C1, C2, . . . , Cm to relax a QCQP to a convex SOCP, which

is then a lower bound of such a QCQP. In some special cases, for example QCQP with

one or two constraints, homogeneous QCQP, the relaxation is tight, and the QCQP

is then equivalently transformed to a convex SOCP. Especially, also in this section,

we present how to use the positive semidefinite interval of matrix pencil to completely

solve an important case of the QCQP-the GTRS. Finally, an application of the SDC

to maximizing a sum of generalized Rayleigh quotients is mentioned. The results of

Section 3.1 and Subsection 3.2.1 are taken from [47]. The results of Subsection 3.2.2

are taken from [46].

3.1 Computing the positive semidefinite interval

Let C1 and C2 be real symmetric matrices. In this section we are concerned with

finding the set I⪰(C1, C2) = {µ ∈ R : C1 + µC2 ⪰ 0} of real values µ such that the

matrix pencil C1 + µC2 is positive semidefinite. If C1, C2 are not R-SDC, I⪰(C1, C2)

either is empty or has only one value µ. When C1, C2 are R-SDC, I⪰(C1, C2), if not

empty, can be a singleton or an interval. Especially, if I⪰(C1, C2) is an interval and

at least one of the matrices is nonsingular then its interior is the positive definite

interval I≻(C1, C2). If C1, C2 are both singular, then even I⪰(C1, C2) is an interval, its
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interior may not be I≻(C1, C2), but C1, C2 are then decomposed to block diagonals of

submatrices A1, B1 with B1 nonsingular such that I⪰(C1, C2) = I⪰(A1, B1).

In this section, we show computing I⪰(C1, C2) in two separate cases: C1, C2 are

R-SDC and C1, C2 are not R-SDC.

3.1.1 Computing I⪰(C1, C2) when C1, C2 are R-SDC

Now, if C1, C2 are R-SDC and C2 is nonsingular, by Lemma 1.2.1, there is a

nonsingular matrix P such that

J := P−1C−1
2 C1P = diag(λ1Im1 , . . . , λkImk

), (3.1)

is a diagonal matrix, where λ1, λ2, . . . , λk are the k distinct eigenvalues of C−1
2 C1, Imt

is the identity matrix of size mt ×mt and m1 +m2 + . . . +mk = n. We can suppose

without loss of generality that λ1 > λ2 > . . . > λk.

Observe that P TC2P.J = P TC1P and P TC1P is symmetric. Lemma 1.1.2 in-

dicates that P TC2P is a block diagonal matrix with the same partition as J. That

is

P TC2P = diag(B1, B2 . . . , Bk), (3.2)

where Bt is real symmetric matrices of size mt ×mt for every t = 1, 2, . . . , k. We now

have

P TC1P = P TC2P.J = diag(λ1B1, λ2B2 . . . , λkBk). (3.3)

Both (3.2) and (3.3) show that C1, C2 are now decomposed into the same block structure

and the matrix pencil C1 + µC2 now becomes

P T (C1 + µC2)P = diag((λ1 + µ)B1, (λ2 + µ)B2 . . . , (λk + µ)Bk). (3.4)

The requirement C1 + µC2 ⪰ 0 is then equivalent to

(λi + µ)Bi ⪰ 0, i = 1, 2, . . . , k. (3.5)

Using (3.5) we compute I⪰(C1, C2) as follows.

Theorem 3.1.1. Suppose C1, C2 ∈ Sn are R-SDC and C2 is nonsingular.

1. If C2 ≻ 0 then I⪰(C1, C2) = [−λk,+∞);

78



2. If C2 ≺ 0 then I⪰(C1, C2) = (−∞,−λ1];

3. If C2 is indefinite then

(i) if B1, B2, . . . , Bt ≻ 0 and Bt+1, Bt+2, . . . , Bk ≺ 0 for some t ∈ {1, 2, . . . , k},
then I⪰(C1, C2) = [−λt,−λt+1].

(ii) if B1, B2, . . . , Bt−1 ≻ 0, Bt is indefinite and Bt+1, Bt+2, . . . , Bk ≺ 0, then

I⪰(C1, C2) = {−λt},

(iii) in other cases, that is either Bi, Bj are indefinite for some i ̸= j or Bi ≺
0, Bj ≻ 0 for some i < j or Bi is indefinite and Bj ≻ 0 for some i < j, then

I⪰(C1, C2) = ∅.

Proof. 1. If C2 ≻ 0 then Bi ≻ 0 ∀i = 1, 2, . . . , k. The inequality (3.5) is then

equivalent to λi + µ ≥ 0 ∀i = 1, 2, . . . , k. Since λ1 > λ2 > . . . > λk, we need only

µ ≥ −λk. This shows I⪰(C1, C2) = [−λk,+∞).

2. Similarly, if C2 ≺ 0 then Bi ≺ 0 ∀i = 1, 2, . . . , k. The inequality (3.5) is then

equivalent to λi + µ ≤ 0 ∀i = 1, 2, . . . , k. Then I⪰(C1, C2) = (−∞,−λ1].

3. The case C2 is indefinite:

(i) if B1, B2, . . . , Bt ≻ 0 and Bt+1, Bt+2, . . . , Bk ≺ 0 for some t ∈ {1, 2, . . . , k},
the inequality (3.5) then impliesλi + µ ≥ 0,∀i = 1, 2, . . . , t,

λi + µ ≤ 0,∀i = t+ 1, . . . , k.

Since λ1 > λ2 > . . . > λk, we have I⪰(C1, C2) = [−λt,−λt+1].

(ii) if B1, B2, . . . , Bt−1 ≻ 0, Bt is indefinite and Bt+1, Bt+2, . . . , Bk ≺ 0 for some

t ∈ {1, 2, . . . , k}. The inequality (3.5) then implies
λi + µ ≥ 0,∀i = 1, 2, . . . , t− 1

λt + µ = 0

λi + µ ≤ 0,∀i = t+ 1, . . . , k.

Since λ1 > λ2 > . . . > λk, we have I⪰(C1, C2) = {−λt}.

(iii) if Bi, Bj are indefinite, (3.5) implies λi +µ = 0 and λj +µ = 0. This cannot

happen since λi ̸= λj. If Bi ≺ 0 and Bj ≻ 0 for some i < j, thenλi + µ ≤ 0

λj + µ ≥ 0
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implying −λj ≤ µ ≤ −λi. This also cannot happen since λi > λj. Finally, if

Bi is indefinite and Bj ≻ 0 for some i < j. Again, by (3.5),λi + µ = 0

λj + µ ≥ 0

implying λi ≤ λj. This also cannot happen. So I⪰(C1, C2) = ∅ in these all

three cases.

The proof of Theorem 3.1.1 indicates that if C1, C2 are R-SDC, C2 is nonsingu-

lar and I⪰(C1, C2) is an interval then I≻(C1, C2) is nonempty. In that case we have

I≻(C1, C2) = int(I⪰(C1, C2)), please see [44]. If C2 is singular and C1 is nonsingular,

we have the following result.

Theorem 3.1.2. Suppose C1, C2 ∈ Sn are R-SDC, C2 is singular and C1 is nonsingu-

lar. Then

(i) there always exists a nonsingular matrix U such that

UTC2U = diag(B1, 0),

UTC1U = diag(A1, A3),

where B1, A1 are symmetric of the same size, B1 is nonsingular;

(ii) if A3 ≻ 0 then I⪰(C1, C2) = I⪰(A1, B1). Otherwise, I⪰(C1, C2) = ∅.

Proof. (i) Since C2 is symmetric and singular, there is an orthogonal matrix Q1 that

puts C2 into the form

Ĉ2 = QT
1C2Q1 = diag(B1, 0)

such that B1 is a nonsingular symmetric matrix of size p× p, where p = rank(B). Let

Ĉ1 := QT
1C1Q1. Since C1, C2 are R-SDC, Ĉ1, Ĉ2 are R-SDC too (the converse also holds

true). We can write Ĉ1 in the following form

Ĉ1 = QT
1C1Q1 =

(
M1 M2

MT
2 M3

)
(3.6)

such that M1 is a symmetric matrix of size p × p, M2 is a p × (n − p) matrix, M3 is

symmetric of size (n− p)× (n− p) and, importantly, M3 ̸= 0. Indeed, if M3 = 0 then
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Ĉ1 = QT
1C1Q1 =

(
M1 M2

MT
2 0

)
. Then we can choose a nonsingular matrix H written

in the same partition as Ĉ1 : H =

(
H1 H2

H3 H4

)
such that both HT Ĉ2H,HT Ĉ1H are

diagonal and HT Ĉ2H is of the form

HT Ĉ2H =

(
HT

1 B1H1 HT
1 B1H2

HT
2 B1H1 HT

2 B1H2

)
=

(
HT

1 B1H1 0

0 0

)
,

where HT
1 B1H1 is nonsingular. This implies H2 = 0. On the other hand,

HT Ĉ1H =

(
HT

1 M1H1 +HT
3 M

T
2 H1 +HT

1 M2H3 HT
1 M2H4

HT
4 M

T
2 H1 0

)

is diagonal implying that HT
1 M2H4 = 0, and so

HT Ĉ1H =

(
HT

1 M1H1 +HT
3 M

T
2 H1 +HT

1 M2H3 0

0 0

)
.

This cannot happen since Ĉ1 is nonsingular.

Let P be an orthogonal matrix such that P TM3P = diag(A3, 0q−r), where A3 is a

nonsingular diagonal matrix of size r×r, r ≤ q and p+q = n, and set U1 = diag(Ip, P ).

We then have

C̃1 := UT
1 Ĉ1U1 =

(
M1 M2P

(M2P )T P TM3P

)
=

M1 A4 A5

AT
4 A3 0

AT
5 0 0

 , (3.7)

where
(
A4 A5

)
= M2P, A4 and A5 are of size p×r and p×(q−r), r ≤ q, respectively.

Let

U2 =

 Ip 0 0

−A−1
3 AT

4 Ir 0

0 0 Iq−r

 and U = Q1U1U2.

We can verify that

UTC2U = UT
2 U

T
1 (Q

T
1C2Q1))U1U2 = Ĉ2,

and, by (3.7),

UTC1U = UT
2 C̃1U2 =

M1 − A4A
−1
3 AT

4 0 A5

0 A3 0

AT
5 0 0

 .
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We denote A1 := M1 − A4A
−1
3 AT

4 and rewrite the matrices as follows

UTC2U = diag(B1, 0), U
TC1U =

A1 0 A5

0 A3 0

AT
5 0 0

 .

We now consider whether it can happen that r < q. We note that UTC1U,U
TC2U are

R-SDC. We can choose a nonsingular congruence matrix K written in the form

K =

K1 K2 K3

K4 K5 K6

K7 K8 K9


such that not only the matrices KTUTC1UK,KTUTC2UK are diagonal but also the

matrixKTUTC2UK is remained a p×p nonsingular submatrix at the northwest corner.

That is

KTUTC2UK =

KT
1 B1K1 KT

1 B1K2 KT
1 B1K3

KT
2 B1K1 KT

2 B1K2 KT
2 B1K3

KT
3 B1K1 KT

3 B1K2 KT
3 B1K3

 =

KT
1 B1K1 0 0

0 0 0

0 0 0


is diagonal and KT

1 B1K1 is nonsingular diagonal of size p× p. This implies that K2 =

K3 = 0. Then

KTUTC1UK =

=


KT

1 A1K1+KT
1 A2K7

+KT
4 A3K4+KT

7 AT
2 K1

KT
1 A2K8 +KT

4 A3K5 KT
1 A2K9 +KT

4 A3K6

KT
8 A

T
2K1 +KT

5 A
T
3K4 KT

5 A3K5 KT
5 A3K6

KT
9 A

T
2K1 +KT

6 A
T
3K4 KT

6 A3K5 KT
6 A3K6



=

KT
1 A1K1 +KT

1 A2K7 +KT
4 A3K4 +KT

7 A
T
2K1 0 0

0 KT
5 A3K5 0

0 0 KT
6 A3K6


is diagonal implying that

KT
1 A1K1 +KT

1 A2K7 +KT
4 A3K4 +KT

7 A
T
2K1, K

T
5 A3K5, K

T
6 A3K6

are diagonal. Note that UTC1U is nonsingular, KT
5 A3K5, K

T
6 A3K6 must be nonsingu-

lar. But then KT
5 A3K6 = 0 with A3 nonsingular is a contradiction. It therefore holds

that q = r. Then

UTC2U = diag(B1, 0), U
TC1U = diag(A1, A3)

with B1, A1, A3 as desired.
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(ii) We note first that C1 is nonsingular so is A3. If A3 ≻ 0, then C1 + µC2 ⪰ 0 if

and only if A1 + µB1 ⪰ 0. So it holds in that case I⪰(C1, C2) = I⪰(A1, B1). Otherwise,

A3 is either indefinite or negative definite then I⪰(C1, C2) = ∅.

The proofs of Theorems 3.1.1 and 3.1.2 reveal the following important result.

Corollary 3.1.1. Suppose C1, C2 ∈ Sn are R-SDC and either C1 or C2 is nonsingular.

Then I≻(C1, C2) is nonempty if and only if I⪰(C1, C2) has more than one point.

If C1, C2 are both singular, by Lemma 1.2.8, they can be decomposed in one of

the following forms.

For any C1, C2 ∈ Sn, there always exists a nonsingular matrix U that puts C2 to

C̃2 = UTC2U =

(
B1 0p×r

0r×p 0r×r

)

such that B1 is nonsingular diagonal of size p× p, and puts A to Ã of either form

C̃1 = UTC1U =

(
A1 A2

AT
2 0r×r

)
(3.8)

where A1 is symmetric of dimension p× p and A2 is a p× r matrix, or

C̃1 = UTC1U =

 A1 0p×s A2

0s×p A3 0s×(r−s)

AT
2 0(r−s)×s 0(r−s)×(r−s)

 , (3.9)

where A1 is symmetric of dimension p × p, A2 is a p × (r − s) matrix, and A3 is a

nonsingular diagonal matrix of dimension s× s; p, r, s ≥ 0, p+ r = n.

It is easy to verify that C1, C2 are R-SDC if and only if C̃1, C̃2 are R-SDC. And
we have:

i) If C̃1 takes the form (3.8) then C̃2, C̃1 are R-SDC if and only if B1, A1 are R-SDC
and A2 = 0;

ii) If C̃1 takes the form (3.9) then C̃2, C̃1 are R-SDC if and only if B1, A1 are R-SDC
and A2 = 0 or does not exist, i.e., s = r.

Now suppose that {C1, C2} are R-SDC, without loss of generality we always

assume that C̃2, C̃1 are already R-SDC. That is

C̃2 = UTC2U = diag(B1, 0), C̃1 = UTC1U = diag(A1, 0) (3.10)
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or

C̃2 = UTC2U = diag(B1, 0), C̃1 = UTC1U = diag(A1, A4), (3.11)

where A1, B1 are of the same size and diagonal, B1 is nonsingular and if C̃1 takes the

form (3.8) or (3.9) and A2 = 0 then A4 = diag(A3, 0) or if C̃1 takes the form (3.9) and

A2 does not exist then A4 = A3. Now we can compute I⪰(C1, C2) as follows.

Theorem 3.1.3. (i) If C̃2, C̃1 take the form (3.10), then I⪰(C1, C2) = I⪰(A1, B1);

(ii) If C̃2, C̃1 take the form (3.11), then I⪰(C1, C2) = I⪰(A1, B1) if A4 ⪰ 0 and

I⪰(C1, C2) = ∅ otherwise.

We note that B1 is nonsingular, I⪰(A1, B1) is therefore computed by Theorem

3.1.1. Especially, if I⪰(A1, B1) has more than one point, then I≻(A1, B1) ̸= ∅, see
Corollary 3.1.1.

3.1.2 Computing I⪰(C1, C2) when C1, C2 are not R-SDC

In this section we consider I⪰(C1, C2) when C1, C2 are not R-SDC. We need first

to show that if C1, C2 are not R-SDC, then I⪰(C1, C2) either is empty or has only one

point.

Lemma 3.1.1. If C1, C2 ∈ Sn are positive semidefinite then C1 and C2 are R-SDC.

Proof. Since C1, C2 are positive semidefinite, C1+C2 ⪰ 0;C1+2C2 ⪰ 0 and C1+3C2 ⪰
0.

We show that Ker(C1 + 2C2) ⊆ KerC1

⋂
KerC2. Let x ∈ Ker(C1 + 2C2), we have

(C1 + 2C2)x = 0. Implying xT (C1 + 2C2)x = 0. Then, x ∈ Rn

0 ≤xT (C1 + C2)x = xT (C1 + 2C2)x− xTC2x = −xTC2x

and xTC2x ≥ 0

which implies that xTC2x = 0.

Since xT (C1+2C2)x = 0, xTC2x = 0, we have xTC1x = 0 and xT (C1+3C2)x = 0.

By C1 + 2C2 ⪰ 0;C1 + 3C2 ⪰ 0, and xT (C1 + 2C2)x = 0, xT (C1 + 3C2)x = 0,

we have (C1 + 2C2)x = 0, (C1 + 3C2)x = 0. Implying C2x = 0, C1x = 0. Then x ∈
KerC1

⋂
KerC2.

By Lemma 1.2.5, C1 and C2 are R-SDC.
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Lemma 3.1.2. If C1, C2 ∈ Sn are not R-SDC then I⪰(C1, C2) either is empty or has

only one element.

Proof. Suppose on the contrary that I⪰(C1, C2) has more than one elements, then

we can choose µ1, µ2 ∈ I⪰(C1, C2), µ1 ̸= µ2 such that C := C1 + µ1C2 ⪰ 0 and

D := C1 + µ2C2 ⪰ 0. By Lemma 3.1.1, C,D are R-SDC, i.e., there is a nonsingular

matrix P such that P TCP, P TDP are diagonal. Then P TC2P is diagonal because

P TCP −P TDP = (µ1− µ2)P
TC2P and µ1 ̸= µ2. Since P

TC1P = P TCP − µ1P
TC2P,

P TC1P is also diagonal. That is C1, C2 are R-SDC and we get a contradiction.

To know when I⪰(C1, C2) is empty or has one element, we need the following

result.

Lemma 3.1.3 (Theorem 1, [64]). Let C1, C2 ∈ Sn, C2 be nonsingular. Let C−1
2 C1

have the real Jordan normal form diag(J1, . . . Jr, Jr+1, . . . , Jm), where J1, . . . , Jr are

Jordan blocks corresponding to real eigenvalues λ1, λ2, . . . , λr of C
−1
2 C1 and Jr+1, . . . , Jm

are Jordan blocks for pairs of complex conjugate roots λi = ai ± ibi, ai, bi ∈ R, i =

r + 1, r + 2, . . . ,m of C−1
2 C1. Then there exists a nonsingular matrix U such that

UTC2U = diag(ϵ1E1, ϵ2E2, . . . , ϵrEr, Er+1, . . . , Em) (3.12)

UTC1U = diag(ϵ1E1J1, ϵ2E2J2, . . . , ϵrErJr, Er+1Jr+1, . . . , EmJm) (3.13)

where ϵi = ±1, Ei =


0 0 . . . 0 1

0 0 . . . 1 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

1 0 . . . 0 0

 ; dimEi = dimJi = ni;n1 + n2 + . . . +

nm = n.

Theorem 3.1.4. Let C1, C2 ∈ Sn be as in Lemma 3.1.3 and C1, C2 are not R-SDC.
The followings hold.

(i) if C1 ⪰ 0 then I⪰(C1, C2) = {0};

(ii) if C1 ⪰̸ 0 and there is a real eigenvalue λl of C
−1
2 C1 such that C1 + (−λl)C2 ⪰ 0

then

I⪰(C1, C2) = {−λl};

(iii) if (i) and (ii) do not occur then I⪰(C1, C2) = ∅.

85



Proof. It is sufficient to prove only (iii). Lemma 3.1.3 allows us to decompose C1 and

C2 as the forms (3.13) and (3.12), respectively. Since C1, C2 are not R-SDC, at least
one of the following cases must occur.

Case 1 There is a Jordan block Ji such that ni ≥ 2 and λi ∈ R. We then consider

the following principal minor of C1 + µC2 :

Y = ϵi(EiJi + µEi) = ϵi


0 0 . . . 0 λi + µ

0 0 . . . λi + µ 1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

λi + µ 1 . . . 0 0


ni×ni

.

If ni = 2 then Y = ϵi

(
0 λi + µ

λi + µ 1

)
. Since µ ̸= −λi, Y ̸⪰ 0 so A + µB ̸⪰ 0. If

ni > 2 then Y always contains the following not positive semidefinite principal minor

of size (ni − 1)× (ni − 1) :

ϵi


0 0 . . . λi + µ 1

0 0 . . . 1 0

. . . . . . . . . . . . . . .

λi + µ 1 . . . 0 0

1 0 . . . 0 0


(ni−1)×(ni−1)

.

So A+ µB ̸⪰ 0.

Case 2 There is a Jordan block Ji such that ni ≥ 4 and λi = ai ± ibi /∈ R. We

then consider

Y = ϵi(EiJi + µEi) = ϵi


0 0 . . . bi ai + µ

0 0 . . . ai + µ −bi
. . . . . . . . . . . . . . .

bi ai + µ . . . 0 0

ai + µ −bi . . . 0 0


ni×ni

.

This matrix always contains either a principal minor of size 2×2 : ϵi

(
bi ai + µ

ai + µ −bi

)
or a principal minor of size 4× 4 :

ϵi


0 0 bi ai + µ

0 0 ai + µ −bi
bi ai + µ 0 0

ai + µ −bi 0 0

 .

Both are not positive semidefinite for any µ ∈ R.
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Similarly, we have the following result.

Theorem 3.1.5. Let C1, C2 ∈ Sn be not R-SDC. Suppose C1 is nonsingular and

C−1
1 C2 has real Jordan normal form diag(J1, . . . Jr, Jr+1, . . . , Jm), where J1, . . . , Jr are

Jordan blocks corresponding to real eigenvalues λ1, λ2, . . . , λr of C
−1
1 C2 and Jr+1, . . . , Jm

are Jordan blocks for pairs of complex conjugate roots λi = ai ± ibi, ai, bi ∈ R, i =

r + 1, r + 2, . . . ,m of C−1
1 C2.

(i) If C1 ⪰ 0 then I⪰(C1, C2) = {0};

(ii) If C1 ⪰̸ 0 and there is a real eigenvalue λl ̸= 0 of C−1
1 C2 such that C1 +(

− 1

λl

)
C2 ⪰ 0 then I⪰(C1, C2) =

{
− 1

λl

}
;

(iii) If cases (i) and (ii) do not occur then I⪰(C1, C2) = ∅.

Finally, if C1 and C2 are not R-SDC and both singular. Lemma 1.2.8 indicates

that C1 and C2 can be simultaneously decomposed as C̃1 and C̃2 in either (3.8) or (3.9).

If C̃1 and C̃2 take the forms (3.8) and A2 = 0 then I⪰(C1, C2) = I⪰(A1, B1), where

A1, B1 are not R-SDC and B1 is nonsingular. In this case we apply Theorem 3.1.4 to

compute I⪰(A1, B1). If C̃1 and C̃2 take the forms (3.9) and A2 = 0. In this case, if

A3 is not positive definite then I⪰(C1, C2) = ∅. Otherwise, I⪰(C1, C2) = I⪰(A1, B1),

where A1, B1 are not R-SDC and B1 is nonsingular, again we can apply Theorem 3.1.4.

Therefore we need only to consider the case A2 ̸= 0 with noting that I⪰(C1, C2) ⊂
I⪰(A1, B1).

Theorem 3.1.6. Given C1, C2 ∈ Sn are not R-SDC and singular such that C̃1 and

C̃2 take the forms in either (3.8) or (3.9) with A2 ̸= 0. Suppose that I⪰(A1, B1) =

[a, b], a < b. Then, if a ̸∈ I⪰(C1, C2) and b ̸∈ I⪰(C1, C2) then I⪰(C1, C2) = ∅.

Proof. We consider C̃1 and C̃2 in (3.9), the form in (3.8) is considered similarly. Suppose

in contrary that I⪰(C1, C2) = {µ0} and a < µ0 < b. Since I⪰(A1, B1) has more than one

point, by Lemma 3.1.2, A1 and B1 are R-SDC. LetQ1 be a p×p nonsingular matrix such

that QT
1A1Q1, Q

T
1B1Q1 are diagonal, then QT

1 (A1 + µ0B1)Q1 := diag(γ1, γ2, . . . , γp) is

a diagonal matrix. Moreover, B1 is nonsingular, we have I≻(A1, B1) = (a, b), please

see Corollary 3.1.1. Then γi > 0 for i = 1, 2, . . . , p because µ0 ∈ I≻(A1, B1). Let

Q := diag(Q1, Is, Ir−s) we then have

QT (C̃1 + µ0C̃2)Q =

QT
1 (A1 + µ0B1)Q1 0p×s QT

1A2

0s×p A3 0s×(r−s)

AT
2Q1 0(r−s)×s 0(r−s)×(r−s)

 .
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We note that I⪰(C1, C2) = {µ0} is singleton implying det(C1 + µ0C2) = 0 and so

det(QT (C̃1 + µ0C̃2)Q) = 0. On the other hand, since A3 is nonsingular diagonal and

A1 + µ0B1 ≻ 0, the first p + s columns of the matrix QT (C̃1 + µ0C̃2)Q are linearly

independent. One of the following cases must occur: i) the columns of the right side

submatrix

 QT
1A2

0s×(r−s)

0(r−s)×(r−s)

 are linearly independent and at least one column, suppose

(c1, c2, . . . , cp, 0, 0, . . . , 0)
T , is a linear combination of the columns of the matrixQT

1 (A1 + µ0.B1)Q1

0s×p

AT
2Q1

 := (column1|column2| . . . |columnp),

where columni is the ith column of the matrix or ii) the columns of the right side

submatrix

 QT
1A2

0s×(r−s)

0(r−s)×(r−s)

 are linearly dependent. If the case i) occurs then there are

scalars a1, a2, . . . , ap which are not all zero such that

c1

c2
...

cp

0
...

0


= a1column1 + a2column2 + . . .+ apcolumnp. (3.14)

Equation (3.14) implies that



c1 = a1γ1

c2 = a2γ2

. . .

cp = apγp

0 = a1c1 + a2c2 + . . .+ apcp

which further im-

plies

0 = (a1)
2γ1 + (a1)

2γ2 + . . .+ (ap)
2γp.

This cannot happen with γi > 0 and (a1)
2 + (a2)

2 + . . .+ (ap)
2 ̸= 0. This contradiction

shows that I⪰(C1, C2) = ∅. If the case ii) happens then there always exists a nonsingular
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matrix H such that

HTQT (C̃1 + µ0C̃2)QH =


QT

1 (A1 + µ0B1)Q1 0p×s Â2 0

0s×p A3 0 0

ÂT
2 0 0 0

0 0 0 0

 ,

where Â2 is a full column-rank matrix. Let

Ĉ1 =

QT
1A1Q1 0p×s Â2

0s×p A3 0

ÂT
2 0 0

 , Ĉ2 =

QT
1B1Q1 0p×s 0

0s×p 0 0

0 0 0

 ,

we have I⪰(C1, C2) = I⪰(C̃1, C̃2) = I⪰(Ĉ1, Ĉ2) and so I⪰(Ĉ1, Ĉ2) = {µ0}. This implies

det(Ĉ1+µ0Ĉ2) = 0, and the right side submatrix

Â2

0

0

 is full column-rank. We return

to the case i).

3.2 Solving the quadratically constrained quadratic

programming

We consider the following QCQP problem with m constraints:

(Pm)
min f0(x) = xTC0x+ aT0 x

s.t. fi(x) = xTCix+ aTi x+ bi ≤ 0, i = 1, 2, . . . ,m,

where Ci ∈ Sn, x, ai ∈ Rn and bi ∈ R. When Ci are all positive semidefinite, (Pm) is a

convex problem, for which efficient algorithms are available such as the interior method

[9, Chapter 11]. However, if convexity is not assumed, (Pm) is in general very difficult,

even its special form when all constraints are affine, i.e., Ci = 0 for i = 1, 2, . . . ,m, and

C0 is indefinite, is already NP-hard [66, 51].

If C0, C1, . . . , Cm are R-SDC, a congruence matrix R is obtained so that

RTCiR = diag(αi
1, . . . , α

i
n).

By change of variables x = Ry, the quadratic forms xTCix become the sums of squares

in y. That is,

xTCix = yTRTCiRy =
n∑

j=1

αi
jy

2
j .

89



Set αi = (αi
1, . . . , α

i
n)

T , ξi = RTai and zj = y2j , j = 1, 2, . . . , n, (Pm) is then rewritten

as follows.

(Pm)

min f0(y, z) = αT
0 z + ξT0 y

s.t. fi(y, z) = αT
i z + ξTi y + bi ≤ 0, i = 1, 2, . . . ,m,

y2j = zj, j = 1, 2, . . . , n.

(3.15)

The constraints y2j = zj are not convex. By relaxing y2j ≤ zj for j = 1, 2, . . . , n, we get

the following relaxation of (Pm) :

(SPm)

min f0(y, z) = αT
0 z + ξT0 y

s.t. fi(y, z) = αT
i z + ξTi y + bi ≤ 0, i = 1, 2, . . . ,m,

y2j ≤ zj, j = 1, 2, . . . , n.

(3.16)

The problem (SPm) is a convex second-order cone programming (SOCP) problem and

it can be solved in polynomial time by the interior algorithm [21].

Because of the relaxation y2j ≤ zj, the optimal value of (SPm) is less than that of

(Pm). That is v((SPm)) ≤ v((Pm)), here v(·) is the optimal value of the problem (·). In
other words, the convex SOCP problem (SPm) is a lower bound of (Pm). The relaxation

is said to be tight, or exact, if v((SPm)) = v((Pm)), and in that case, the nonconvex

problem (Pm) is equivalently transformed to a convex problem (SPm). In 2014, Ben-

Tal and Hertog [6] showed that v((SP1)) = v((P1)) under the Slater condition, i.e.,

there is x̄ ∈ Rn such that f1(x̄) < 0, and v((SP2)) = v((P2)) under some additional

appropriate assumptions. In 2019, Adachi and Nakatsukasa [1] proposed an eigenvalue-

based algorithm for a definite feasible (P1), i.e., the Slater condition is satisfied and

the positive definite interval I≻(C0, C1) = {µ ∈ R : C0 + µC1 ≻ 0} is nonempty. It

should be noticed that I≻(C0, C1) can be empty even if I⪰(C0, C1) is an interval and

(P1) has optimal solutions. In the following, we explore the SDC of C ′
is to apply for

some special cases of (Pm).

3.2.1 Application for the GTRS

We write (P1) specifically as follows.

(P1)
min f0(x) = xTC0x+ aT0 x

s.t. f1(x) = xTC1x+ aT1 x+ b1 ≤ 0.

Problem (P1) itself arises from many applications such as time of arrival problems

[32], double well potential problems [17], subproblems of consensus ADMM in solving
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quadratically constrained quadratic programming in signal processing [36]. In partic-

ular, it includes the trust-region subproblem (TRS) as a special case, in which C1 = I

is the identity matrix, a1 = 0 and b1 = −1. In literature, it is thus often referred to as

the generalized trust region subproblem (GTRS).

Without loss of generality, we only solve problem (P1) under the Slater condition,

i.e., there exists x̄ ∈ Rn such that f1(x̄) < 0. Because, if the Slater condition is violated,

then f1(x) ≥ 0 for all x ∈ Rn. Problem (P1) is then either infeasible or reduced to an

unconstrained quadratic problem, which can be solved efficiently [72].

In 1993, Moré [44] obtained the following important results for (P1).

Lemma 3.2.1 ([44], Theorem 3.4). Suppose the Slater condition is satisfied. A vector

x∗ ∈ Rn is an optimal solution to (P1) if and only if there exists µ∗ ≥ 0 such that

(C0 + µ∗C1)x
∗ + a0 + µ∗a1 = 0, (3.17)

f1(x
∗) ≤ 0, (3.18)

µ∗f1(x
∗) = 0, (3.19)

C0 + µ∗C1 ⪰ 0. (3.20)

Recall that I≻(C0, C1) = {µ ∈ R : C0 + µC1 ≻ 0}.

Lemma 3.2.2 ([44]). If I≻(C0, C1) is nonempty, it is an open interval. Moreover, if µ

is a finite endpoint of I≻(C0, C1) then C0+µC1 is positive semidefinite but not positive

definite.

Suppose I≻(C0, C1) ̸= ∅, let φ(µ) := f1[x(µ)], where x(µ) is solved from the linear

equation (3.17) and µ ∈ I≻(C0, C1).

Lemma 3.2.3 ([44], Theorem 5.2). Suppose I≻(C0, C1) ̸= ∅. The function φ(µ) is

strictly decreasing on I≻(C0, C1), unless x(µ) is constant on I≻(C0, C1) with C0x(µ) +

a0 = 0 and C1x(µ) + a1 = 0 for all µ ∈ I≻(C0, C1).

Lemmas 3.2.1, 3.2.2 and 3.2.3 together indicate that the optimal Lagrange mul-

tiplier µ∗ of (P1) can be found efficiently whenever I⪰(C0, C1) is computed. Using the

results in Subsection 3.2.1, we present algorithms for finding µ∗ and x∗ = x(µ∗) satis-

fying (3.17)-(3.20) as follows. Let I = I⪰(C0, C1) ∩ [0,∞) denote the set of Lagrange

multipliers of (P1).

1. If I = ∅, then (P1) has no optimal solution, it is in fact unbounded from below

in this case [72].
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2. If I has only one value µ, we solve the linear equation (3.17) for a corresponding

solution x(µ). If µ and x(µ) satisfy (3.18)-(3.19), then µ∗ = µ and x∗ = x(µ).

Otherwise, (P1) has no optimal solution.

3. If I is an interval, we need to detect whether there exist a µ ∈ I and a corre-

sponding x(µ) satisfying (3.18)-(3.19). This case raises two questions: 1) how to

test whether µ and x(µ) satisfy (3.18)-(3.19)? and 2) how to pick another µ ∈ I

to continue the process if the current µ and x(µ) do not satisfy (3.18)-(3.19)?

For question 1), if µ = 0 we need to test whether f1(x(µ)) ≤ 0; if µ > 0 we

need to test f1(x(µ)) = 0. Below, we present only checking the case f1(x(µ)) = 0

since checking f1(x(µ)) ≤ 0 is done similarly. For question 2), we need to use

Lemma 3.2.2 but not only for the case I≻(C0, C1) ̸= ∅ but also I≻(C0, C1) = ∅.
The details are as below.

Theorem 3.2.1. If µ∗ > 0, then an optimal solution x∗ of (P1) is found by solving a

quadratic equation.

Proof. Since µ∗ > 0, x∗ is an optimal solution of (P1) if and only if x∗ satisfies (3.17)

and f1(x
∗) = 0. From the equation (3.17), x∗ is of the form

x∗ = x0 +Ny, (3.21)

where x0 = −(C0 + µ∗C1)
+(a + µ∗b), (C0 + µ∗C1)

+ is the Moore-Penrose generalized

inverse of the matrix C0 + µ∗C1, N ∈ Rn×r is a basic matrix for the null space of

C0 + µ∗C1 with r = n − rank(C0 + µ∗C1), y ∈ Rr. Notice that the Moore-Penrose

generalized inverse of a matrix A ∈ Fm×n is defined as a matrix A+ ∈ Fn×m satisfying

all of the following four criteria: 1) AA+A = A; 2)A+AA+ = A+; 3)(AA+)∗ = AA+;

4)(A+A)∗ = A+A. If r = 0 then x∗ = x0 = (C0 + µ∗C1)
−1(a + µ∗b) is the unique

solution of (3.17), checking if f1(x
∗) = 0 is then simply substituting x∗ into f1(x). If

r > 0, f1(x
∗) is then a quadratic function of y as follows:

f1(x
∗) = f1(x

0 +Ny)

= yT (NTC1N)y + 2(NT (C1x
0 + b))Ty + x0TC1x

0 + 2bTx0 + c

:= yT C̃1y + 2b̃Ty + c̃ := g̃(y),

where C̃1 = NTC1N, b̃ = NT (C1x
0+b) and c̃ = x0TC1x

0+2bTx0+c. Checking whether

f1(x
∗) = 0 is now equivalent to finding a solution y∗ of the quadratic equation g̃(y) = 0.

Making diagonal if necessary, we can suppose that C̃1 = diag(λ1, . . . , λr) is already

diagonal. The equation g̃(y) = 0 is then simply of the form

r∑
i=1

λiy
2
i + 2

r∑
i=1

b̃iyi + c̃ = 0, (3.22)
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here b̃ = (b̃1, b̃2, . . . , b̃r)
T and y = (y1, y2, . . . , yr)

T . Solving a solution y∗ of this equation

is as follows.

1. If there is an index i such that λi = 0 and b̃i ̸= 0, then

y∗ = (0, . . . , 0,− c̃

2b̃i︸ ︷︷ ︸
ith position

, 0, . . . , 0)T

is a solution of (3.22), and x∗ = x0 + Ny∗ is then an optimal solution to (P1).

Note that if λi = 0 and b̃i = 0, then yi does not play any role in g̃(y) = 0.

2. If λt > 0 and λj < 0 for some indexes t, j, suppose t < j, we then set yi = 0 for

all i ̸= t, i ̸= j, such that the equation (3.22) is reduced to

λty
2
t + λjy

2
j + 2b̄tyt + 2b̄jyj + c̄ = 0.

We write this equation in term of a quadratic equation of yt with parameter yj :

λty
2
t + 2b̄tyt + λjy

2
j + 2b̄jyj + c̄ = 0. (3.23)

Let △(yj) = b̄2t − λt(λjy
2
j + 2b̄jyj + c̄) = −λtλjy

2
j − 2b̄jλtyj − c̄λt + b̄2t . Since

−λtλj > 0, △(yj) ≥ 0 when |yj| is large enough. So we can choose y∗j such that

△(y∗j ) ≥ 0 and y∗t =
−b̄t+
√

△(y∗j )

λt
. Then (y∗t , y

∗
j ) is a solution of (3.23) and

y∗ = (0, . . . , 0, y∗t , 0, . . . , 0, y
∗
j , 0 . . . , 0)

T

is a solution of (3.22). So x∗ = x0 +Ny∗ is optimal to (P1).

3. If λi > 0 for all i = 1, 2, . . . , r, the equation (3.22) can be rewritten as follows

r∑
i=1

λi

(
yi +

b̃i
λi

)2

+ β = 0, (3.24)

where β = c̃−
∑r

i=1
b̃2i
λi
. Now

� if β > 0 then the equation g̃(y) = 0 has no solution so does the equation

f1(x
∗) = 0. (P1) has no optimal solution.

� if β = 0, let y∗ =

(
− b̃1
λ1

,− b̃2
λ2

, . . . ,− b̃r
λr

)T

, then x∗ = x0 + Ny∗ is an

optimal solution of (P1).

� if β < 0, then y∗ =

(
− b̃1
λ1

,− b̃2
λ2

, . . . ,− b̃r−1

λr−1

,

√
−β
λr

− b̃r
λr

)
is a solution of

(3.24). Then x∗ = x0 +Ny∗ is optimal to (P1).
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We emphasize that if C0, C1 are R-SDC, the linear equation (3.17) can be trans-

formed to having a simple form for solving. Indeed, without loss of generality we

assume that C0, C1 are already diagonal:

C0 = diag(α1, α2, . . . , αn), C1 = diag(β1, β2, . . . , βn). (3.25)

The linear equation (3.17) is then of the following simple form

(αi + µβi)xi = −(ai + µbi), i = 1, 2, . . . , n. (3.26)

If I has only one element µ, testing whether µ∗ = µ has been presented in the previous

subsection. If I is an interval of the form I = [µ1, µ2], where µ1 ≥ 0 and µ2 may be

∞, we need to test whether there is an optimal Lagrange multiplier µ∗ ∈ I satisfying

φ(µ∗) = 0.We note that in this case C0, C1 are R-SDC, see Lemma 3.1.2. For simplicity

in presentation, we assume without loss of generality that C0, C1 are diagonal taking

the form (3.25). The testing strategy is considered in the following two separate cases:

IPD ̸= ∅ and IPD = ∅, where IPD = I≻(C0, C1) ∩ [0,+∞).

Definition 3.2.1 ([1]). A GTRS satisfying the following two conditions is said to be

definite feasible.

1. It is strictly feasible: there exists x̄ ∈ Rn such that f1(x̄) < 0, and

2. IPD ̸= ∅

Case 1: IPD ̸= ∅. Then (P1) is definite feasible and it has a unique optimal solution x∗ [44,

Theorem 4.1] and, importantly, I is then the closure of IPD : I = closure(IPD),

please see [44, Theorem 5.3]. By Lemma 3.2.3, the function φ(µ) = f1[x(µ)] is

strictly decreasing on IPD, unless x(µ) is constant on IPD. Using this property of

φ(µ), Adachi et al. [1] obtain the following result.

Lemma 3.2.4 ([1]). Suppose the Slater condition holds for the (P1), i.e., there

exists x̃ ∈ Rn such that f1(x̃) < 0, and IPD ̸= ∅.

(a) If φ(µ) > 0 on IPD and µ2 <∞, then µ∗ = µ2;

(b) If φ(µ) < 0 on IPD then µ∗ = µ1;

(c) If φ(µ) changes its sign on IPD then µ∗ ∈ IPD;

(d) If φ(µ1) > 0 and µ2 =∞, then µ1 < µ∗ < µ2.
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Lemma 3.2.4 suggests a strategy for finding µ∗ as follows: If µ2 is finite, we

compute φ(µ) at endpoints: if φ(µ1) = 0 then µ∗ = µ1, if φ(µ2) = 0 then

µ∗ = µ2. Otherwise, µ∗ ∈ IPD. Then, we use a bisection algorithm for finding

µ∗ : let µ̃ :=
µ1 + µ2

2
. If φ(µ1)φ(µ̃) < 0 then set µ2 := µ̃, else set µ1 := µ̃ and

continue the process with new µ1 and µ2. If µ2 =∞ and φ(µ1) > 0 depending on

how large the value φ(µ1), we choose a positive number l, for example l = φ(µ1),

and set µ = µ1 + l. If φ(µ) < 0, we apply a bisection algorithm as mentioned

above to find µ∗ in [µ1, µ]. If φ(µ) > 0, we choose other µ := µ1+2l and continue

the process.

Case 2: IPD = ∅. As mentioned, (P1) with IPD = ∅ is referred to as the hard case [44, 33].

We now deal with this case as follows.

Theorem 3.2.2. If I is an interval and IPD = ∅ then (P1) either is reduced to

a definite feasible GTRS of smaller dimension or has no optimal solution.

Proof. Since IPD = ∅, by Corollary 3.1.1, C0, C1 are singular and decomposable

in one of the forms (3.10) and (3.11) such that

I⪰(C0, C1) = I⪰(A1, B1) = closure (I≻(A1, B1)) ,

where B1 is nonsingular. C0, C1 are assumed to be diagonal, the forms (3.10) and

(3.11) are written as

C1 = diag(β1, . . . , βp, 0, . . . , 0), C0 = diag(α1, . . . , αp, 0, . . . , 0) (3.27)

and

C1 = diag(β1, . . . , βp, 0, . . . , 0), C0 = diag(α1, . . . , αp, αp+1, . . . , αp+s, 0, . . . , 0),

(3.28)

where B1 = diag(β1, β2, . . . , βp), A1 = diag(α1, α2, . . . , αp) and

A4 = diag(αp+1, . . . , αp+s, 0, . . . , 0).

Since B1 is nonsingular β1, β2, . . . , βp are nonzero.

If C0, C1 take the form (3.27), the equations (3.26) become

(αi + µβi)xi = −(ai + µbi), i = 1, 2, . . . , p; (3.29)

0 = −(ai + µbi), i = p+ 1, . . . , n.

Observe now that if ai = bi = 0 for i = p+1, . . . , n, then the (P1) is reduced to a

definite feasible GTRS of p variables with matrices A1, B1 such that I≻(A1, B1) ̸=
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∅. Otherwise, if there are indexes p + 1 ≤ i, j ≤ n such that bi ̸= 0, bj ̸= 0 and
ai
bi
̸= aj

bj
, then (3.29) has no solution x for all µ ∈ I, if bi ̸= 0 and µ = −ai

bi
∈ I for

some p + 1 ≤ i ≤ n then (3.29) may have solutions at only one µ ∈ I. Checking

whether µ∗ = µ has been discussed in the previous section.

Similarly, if C0, C1 take the form (3.28), the equations (3.26) become

(αi + µβi)xi = −(ai + µbi), i = 1, 2, . . . , p; (3.30)

αixi = −(ai + µbi), i = p+ 1, p+ 2, . . . , p+ s;

0 = −(ai + µbi), i = p+ s+ 1, . . . , n.

(P1) either is reduced to a definte feasible GTRS of p+ s variables with matrices

Ã1 = diag(A1, αp+1, . . . , αp+s) = diag(α1, . . . , αp, αp+1, . . . , αp+s),

B̃1 = diag(B1, 0, . . . , 0︸ ︷︷ ︸
s zeros

) = diag(β1, . . . , βp, 0, . . . , 0︸ ︷︷ ︸
s zeros

)

such that I≻(Ã1, B̃1) ̸= ∅, or has no solution x for all µ ∈ I or has only one

Lagrange multiplier µ ∈ I.

Example 3.2.1. Consider the following problem:

min f(x) = xTC0x+ 2aTx

s.t. g(x) = xTC1x+ 2bTx+ c ≤ 0,
(3.31)

where

C0 =

 2 −12 −12
−12 −10 4

−12 4 20

 , C1 =

 3 4 −1
4 13 5

−1 5 4

 , a =

 1

−1
2

 , b =

−1−1
−1

 , c = 5.

We have

C−1
1 C0 =


5

2
−1

2
−7

−3

2
−11

6

7

3

−1

2

19

6

1

3


is not similar to a diagonally real matrix, C0 and C1 are not R-SDC. By Theorem 3.1.4,

we have I⪰(C0, C1) = {2}.

Now, solving x(µ), where µ = 2 and checking if g(x(µ)) = 0.
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Firstly, we solve the linear equation (C0 + 2C1)x = −(a + 2b). This equation is

equivalent to 
8x1 − 4x2 − 14x3 = 1

−4x1 + 16x2 + 14x3 = 3

8x1 − 4x2 − 14x3 = 1

⇔


x1 = y1

x2 =
1

3
− y1

3

x3 = −1

6
+

2y1
3

,

where y1 ∈ R.

Put x(µ) = (x1, x2, x3)
T := x0 + N.y, where x0 =

(
0,

1

3
,−1

6

)T

, N =


1

−1

3
2

3

 ,

and y = y1.

Now, substituting x(µ) into g(x(µ)), we get ḡ(y) = −2

3
y1 +

17

3
. Solving the

equation ḡ(y) = 0, we have y∗ = y1 =
17

2
. And x∗ = x0 + N.y =

(
17

2
,−5

2
,
33

6

)T

is

then an optimal solution to the GTRS (3.31).

Example 3.2.2. Consider the following problem:

min f(x) = xTC0x+ 2aT z

s.t. g(x) = xTC1x+ 2bTx+ c ≤ 0,
(3.32)

where

C0 =


4 4 0 2

4 8 4 4

0 4 4 2

2 4 2 2

 , C1 =


2 4 2 2

4 18 4 34

2 4 2 2

2 34 2 92

 , a =


−2
−8
−6
−4

 , b =


4

−8
8

−54

 , c = 4.

We have C0, C1 are R-SDC by U =


3 −1 −3 −5
−3 1 3 6

3 −1 −2 −5
1 0 −1 −2

 and

C̃1 = UTC1U = diag(2, 10, 0, 0)

C̃0 = UTC0U = diag(2, 0, 2, 0)

Put x = Uy, then the problem (3.32) is equivalent to the following problem:

min f(y) = yT C̃0y + 2āTy

s.t. g(y) = yT C̃1y + 2b̄Ty + c ≤ 0,
(3.33)
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where

ā = (−4, 0,−2, 0)T := (ā1, ā2, ā3, ā4)
T , b̄ = (6,−20, 2, 0)T :=

(
b̄1, b̄2, b̄3, b̄4

)T
, c = 4.

Since ā4 = b̄4 = 0, the problem (3.33) is reduced to a GTRS of 3 variables:

min f(y) = yTA1y + 2aT1 y

s.t. g(y) = yTB1y + 2bT1 y + c ≤ 0,
(3.34)

where

A1 = diag(2, 0, 2);B1 = diag(2, 10, 0)

a1 = (−4, 0,−2)T , b1 = (6,−20, 2)T , c = 4.

By Theorem 3.1.3, we have I⪰(A1, B1) = [0,+∞).

For µ > 0, we solve the linear equation (A1 + µB1)y = −(a1 + µb1). The

solution of this equation is y(µ) =

(
2− 3µ

µ+ 1
, 2, 1− µ

)T

. And φ(µ) = g(y(µ)) =

−2µ
(
25(µ+ 2)

(µ+ 1)2
+ 2

)
< 0,∀µ > 0. By Lemma 3.2.4, µ∗ = 0.

Now, substituting µ∗ = 0 into the linear equation (A1 + µ∗B1)y = −(a1 + µ∗b1),

we get

y(µ∗) = (2, z1, 1)
T := y0 +N.z

where y0 = (2, 0, 1)T , N =

0

1

0

 , and z = z1.

Next, substituting y(µ∗) into g(y(µ∗)), we get ḡ(y) = 10y21 − 40y1 + 40. Solving

the equation ḡ(y) = 0, we have z∗ = z1 = 2. And y∗ = y0 + N.z = (2, 2, 1)T is an

optimal solution to the GTRS (3.34). Implying x∗ = U(2, 2, 1, 0) = (1,−1, 2, 1)T is

then an optimal solution to the GTRS (3.32).

3.2.2 Applications for the homogeneous QCQP

If (Pm) is homogeneous, i.e., ai = 0, i = 0, 1, . . . ,m and C0, C1, . . . , Cm are R-
SDC, then we do not need relax the constraints zj = y2j to zj ≤ y2j but we can directly

convert (3.15) to a linear programming in non-negative variables zj as follows.

(LPm)

λ∗ = min
∑n

j=1 α
0
jzj

s.t.
∑n

j=1 α
i
jzj + bi ≤ 0, i = 1, 2, . . . ,m,

zj ≥ 0, j = 1, 2, . . . , n.
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The simplex algorithm is now applied for solving (LPm). Suppose z
∗ = (z∗1 , z

∗
2 , . . . , z

∗
n)

T

is an optimal solution of (LPm), then we define y∗ = (
√
z∗1 ,
√
z∗2 , . . . ,

√
z∗n)

T and obtain

an optimal solution x∗ of the homogeneous (Pm) as x
∗ = Ry∗.

We revisit the following special case of the homogeneous (Pm) :

(Q)

min f0(x) = xTC0x

s.t. f1(x) = xTC1x+ b1 ≤ 0,

f2(x) = xTC2x+ b2 ≤ 0,

f3(x) = ∥x∥ = 1.

It was shown in [46] that if the Property J fails, then (Q) is converted to an SDP

problem, please see [46, Definition 1] for details on Property J. However, as mentioned,

when n is large, the SDP problem is not solved efficiently. The following result can

help to deal with such case if the SDC conditions hold.

Theorem 3.2.3. If C0, C1, C2 are R-SDC by an orthogonal congruence matrix then

(Q) is reduced to a linear programing problem over the unit simplex.

Proof. Suppose C0, C1, C2 are R-SDC by an orthogonal congruence matrix R :

RTCiR = diag(αi
1, . . . , α

i
n), i = 0, 1, 2.

We note that the constraint ∥x∥ = 1 is equivalently written as ∥x∥2 = 1 which is

further written xTx = 1. We make a change of coordinates x = Ry and notice that

xTx = yT (RTR)y = yTy. Then (Q) is rewritten as follows

(Q)

min
∑n

j=1 α
0
jy

2
j

s.t.
∑n

j=1 α
1
jy

2
j + b1 ≤ 0,∑n

j=1 α
2
jy

2
j + b2 ≤ 0,∑n

j=1 y
2
j = 1.

Let zj = y2j , problem (Q) is then reduced to a linear programming problem over

the unit simplex as follows.

(Q1)

min
∑n

j=1 α
0
jzj

s.t.
∑n

j=1 α
1
jzj + b1 ≤ 0,∑n

j=1 α
2
jzj + b2 ≤ 0,∑n

j=1 zj = 1, zj ≥ 0 j = 1, 2, . . . , n.

We should note that if the SDC conditions of C0, C1, . . . , Cm fail, even (Pm) is

homogeneous, it is still very hard to solve. Only some special cases have been discovered

to be solved in polynomial time but by SDP relaxation, see for example [73].
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3.3 Applications for maximizing a sum of general-

ized Rayleigh quotients

Given n × n matrices A,B. The ratio R(A;x) :=
xTAx

xTx
, x ̸= 0, is called the

Rayleigh quotient of the matrix A and R(A,B;x) =
xTAx

xTBx
,B ≻ 0, is known as the

generalized Rayleigh quotient of (A,B). We know that

min
x ̸=0

R(A;x) = λmin(A) ≤ R(A;x) ≤ λmax(A) = max
x ̸=0

R(A;x),

where λmin(A), λmax(A) are the smallest and largest eigenvalues of A, respectively.

Similarly,

min
x ̸=0

R(A,B;x) = λmin(A,B) ≤ R(A,B;x) ≤ λmax(A,B) = max
x ̸=0

R(A,B;x),

where λmin(A,B), λmax(A,B) are the smallest and largest generalized eigenvalues of

(A,B), respectively [34].

Due to the homogeneity: R(A;x) = R(A; cx), R(A,B;x) = R(A,B; cx), for any

non-zero scalar c, it holds that

min(max)x ̸=0R(A;x) = min(max)∥x∥=1R(A;x); (3.35)

min(max)x ̸=0R(A,B;x) = min(max)∥x∥=1R(A,B;x). (3.36)

Both (3.35) and (3.36) do not admit local non-global solution [22, 23] and they can be

solved efficiently. However, difficulty will arise when we attemp to optimize a sum.

We consider the following simplest case of the sum:

max
x ̸=0

xTA1x

xTB1x
+

xTA2x

xTB2x
, (3.37)

where B1 ≻ 0, B2 ≻ 0. This problem has various applications such as for the downlink of

a multi-user MIMO system [53], for the sparse Fisher discriminant analysis in pattern

recognition and many others, please see [16, 20, 71, 75, 76, 48, 60, 69]. Zhang [75]

showed that (3.37) admit many local-non global optima, please see [75, Example 3.1].

It is thus very hard to solve. Many studies later [75, 76, 46, 69] proposed different

approximate methods for it. However, if the SDC conditions hold for (3.37), it can be

equivalently reduced to a linear programming on the simplex [69]. We present in detail

this conclusion as follows. Since B1 ≻ 0, there is a nonsingular matrix P such that

B1 = P TP. Substitute y = Px into (3.37), set D = P−1TA1P
−1, A = P−1TA2P

−1, B =

P−1TB2P
−1 and use the homogeneity, problem (3.37) is rewritten as follows.

max
∥y∥=1

yTDy +
yTAy

yTBy
, B ≻ 0. (3.38)
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Theorem 3.3.1 ([72]). If A,B,D are R-SDC by an orthogonal congruence matrix then

(3.38) is reduced to a one-dimensional maximization problem over a closed interval.

Proof. Suppose A,B,D are R-SDC by an orthogonal matrix R :

RTAR = diag(a1, a2, . . . , an), R
TBR = diag(b1, b2, . . . , bn),

RTDR = diag(d1, d2, . . . , dn).

Making a change of variables η = Ry, problem (3.38) becomes

max
∑n

i=1 diη
2
i +

∑n
i=1 aiη

2
i∑n

i=1 biη
2
i

s.t.
∑n

i=1 η
2
i = 1.

(3.39)

Let zi = η2i , problem (3.39) becomes

max
∑n

i=1 dizi +

∑n
i=1 aizi∑n
i=1 bizi

s.t. z ∈ △ = {z :
∑n

i=1 zi = 1, zi ≥ 0, i = 1, 2, . . . , n} .
(3.40)

Suppose z∗ = (z∗1 , z
∗
2 , . . . , z

∗
n) is an optimal solution to (3.40), we set α =

∑n
i=1 biz

∗
i .

Problem (3.40) then shares the same optimal solution set with the following linear

programming problem

max
∑n

i=1 dizi +

∑n
i=1 aizi
α

s.t.
∑n

i=1 bizi = α, z ∈ △.
(3.41)

We note now that (3.41) is a linear programming problem and its optimal solu-

tions can only be the extreme points of △. An extreme point of △ has at most two

nonzero elements. There is no loss of generality, suppose (z1, z2, 0, . . . , 0)
T ∈ △ is a

candidate of the optimal solutions of (3.41). We have z2 = 1− z1 and problem (3.41)

becomes:

max d1z1 + d2(1− z1) +
a1z1 + a2(1− z1)

α
s.t. b1z1 + b2(1− z1) = α;

0 ≤ z1 ≤ 1.

(3.42)

This is a one-dimensional maximization problem as desired.

Now, we extend problem (3.37) to a sum of a finite number of ratios taking the

following format

(Rm) max
x∈Rn\{0}

{
xTA1x

xTB1x
+

xTA2x

xTB2x
+ . . .+

xTAmx

xTBmx

}

101



where Ai, Bi ∈ Sn and Bi ≻ 0. When A1, A2, . . . , Am; B1, B2, . . . , Bm are R-SDC,
problem (Rm) is reduced to maximizing the sum-of-linear-ratios

(SLRm) max
z≥0,z ̸=0

m∑
i=1

αT
i z

βT
i z

.

Even though both (Rm) and (SLRm) are NP-hard, the latter can be better approxi-

mated by some methods, such as an interior algorithm in [21], a range-space approach

in [58] and a branch-and-bound algorithm in [40, 38]. Please see a good survey on

sum-of-ratios problems in [55].

Conclusion of Chapter 3

We computed the positive semidefinite interval I⪰(C1, C2) of matrix pencil C1 +

µC2 by exploring the SDC properties of C1 and C2. Specifically, if C1 and C2 are

R-SDC, I⪰(C1, C2) can be an empty set or a single point or an interval as shown in

Theorems 3.1.1, 3.1.2, 3.1.3. If C1 and C2 are not R-SDC, I⪰(C1, C2) can only be empty

or singleton. Theorems 3.1.4, 3.1.5 and 3.1.6 present these situations. I⪰(C1, C2) is

then applied to solve the generalized trust region subproblems by only solving linear

equations, please see Theorems 3.2.1, 3.2.2. We also showed that if the matrices in

the quadratic terms of a QCQP problem are R-SDC, the QCQP can be relaxed to a

convex SOCP. A lower bound of QCQP is thus found by solving a convex problem.

At the end of the chaper we presented the applications of the SDC for reducing a

sum-of-generalized Rayleigh quotients to a sum-of-linear ratios.
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Conclusions

In this dissertation, the SDC problem of Hermitian matrices and real symmetric

matrices has been dealt with. The results obtained in the dissertation are not only

theoretical but also algorithmic. On one hand, we proposed necessary and sufficient

SDC conditions for a set of arbitrary number of either Hermitian matrices or real

symmetric matrices. We also proposed a polynomial time algorithm for solving the

Hermitian SDC problem, together with some numerical tests in MATLAB to illustrate

for the main algorithm. The results in this part immediately hold for real Hermitian

matrices, which is known as a long-standing problem posed in [30, Problem 12]. In

addition, the main algorithm in this part can be applied to solve the SDC problem

for arbitrarily square matrices by splitting the square matrices up into Hermitian and

skew-Hermitian parts. On the other hand, we developed Jiang and Li’ technique [37]

for two real symmetric matrices to apply for a set of arbitrary number of real symmetric

matrices.

1. Results on the SDC problem of Hermitian matrices.

• Proposed an algorithm for solving the SDC problem of commuting Hermi-

tian matrices ( Algorithm 3);

• Solved the SDC problem of Hermitian matrices by max-rank method (please

see Theorem 2.1.4 and Algorithm 4);

• Proposed a Schmüdgen-like method to find the maximum rank of a Hermi-

tian matrix-pencil (please see Theorem 2.1.2 and Algorithm 2);

• Proposed equivalent SDC conditions of Hermitian matrices linked with the

existence of a positive definite matrix satisfying a system of linear equations

(Theorem 2.1.5);

• Proposed an algorithm for completely solving the SDC problem of complex

or real Hermitian matrices (please see Algorithm 6).

2. Results on the SDC problem of real symmetric matrices.

• Proposed necessary and sufficient SDC conditions for a collection of real

symmetric matrices to be SDC (please see Theorem 2.2.2 for nonsingular

collection and Theorem 2.2.3 for singular collection). These results are com-

pleteness and generalizations of Jiang and Li’s method for two matrices [37].

• Proposed an inductive method for solving the SDC problem of a singular

collection. This method helps to move from study the SDC of a singular

103



collection to study the SDC of a nonsingular collection of smaller dimension

as shown in Theorem 2.2.3. Moreover, we realize that a result by Jiang

and Li [37] is not complete. A missing case not considered in their paper is

now added to make it up in the dissertation, please see Lemma 1.2.8 and

Theorem 1.2.1.

• Proposed algorithms for solving the SDC problems of nonsingular and sin-

gular collection (Algorithm 7 and Algorithm 8, respectively).

3. We apply above SDC results for dealing with the following problems.

• Computed the positive semidefinite interval of matrix pencil C1+µC2 (please

see Theorems 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5 and 3.1.6);

• Applied the positive semidefinite interval of matrix pencil for completely

solving the GTRS (please see Theorems 3.2.1, 3.2.2);

• Solved the homogeneous QCQP problems, the maximization of a sum of

generalized Rayleigh quotients under the SDC of involved matrices.
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Future research

The SDC problem has been completely solved on the field of real numbers R and

complex numbers C. A natural question to aks is whether the obtained SDC results

are remained true on a finite field? on a commutative ring with unit? Moreover, as

seen, the SDC conditions seem to be very strict. That is, not too many collections

can satisfy the SDC conditions. This raises a question that how much disturbance on

the matrices such that a not SDC collection becomes SDC? Those unsloved problems

suggest our future research as follows.

1. Studying the SDC problems on a finite field, on a commutative ring with unit;

2. Studying the approximately simultaneous diagonalization via congruence of ma-

trices. This problem can be stated as follows: Suppose the matrices C1, C2, . . . , Cm,

are not SDC. Given ϵ > 0, whether there are matrices Ei with ∥Ei∥ < ϵ such

that C1 + E1, C2 + E2, . . . , Cm + Em are SDC?

Some results on approximately simultaneously diagonalizable matrices for two

real matrices and for three complex matrices can be found in [50, 68, 61].

3. Explore applications of the SDC results.
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